[HTML][HTML] Financial fraud: a review of anomaly detection techniques and recent advances

W Hilal, SA Gadsden, J Yawney - Expert systems With applications, 2022 - Elsevier
With the rise of technology and the continued economic growth evident in modern society,
acts of fraud have become much more prevalent in the financial industry, costing institutions …

A unifying review of deep and shallow anomaly detection

L Ruff, JR Kauffmann, RA Vandermeulen… - Proceedings of the …, 2021 - ieeexplore.ieee.org
Deep learning approaches to anomaly detection (AD) have recently improved the state of
the art in detection performance on complex data sets, such as large collections of images or …

Anomaly detection in time series: a comprehensive evaluation

S Schmidl, P Wenig, T Papenbrock - Proceedings of the VLDB …, 2022 - dl.acm.org
Detecting anomalous subsequences in time series data is an important task in areas
ranging from manufacturing processes over finance applications to health care monitoring …

Deep learning for anomaly detection: A review

G Pang, C Shen, L Cao, AVD Hengel - ACM computing surveys (CSUR), 2021 - dl.acm.org
Anomaly detection, aka outlier detection or novelty detection, has been a lasting yet active
research area in various research communities for several decades. There are still some …

Usad: Unsupervised anomaly detection on multivariate time series

J Audibert, P Michiardi, F Guyard, S Marti… - Proceedings of the 26th …, 2020 - dl.acm.org
The automatic supervision of IT systems is a current challenge at Orange. Given the size and
complexity reached by its IT operations, the number of sensors needed to obtain …

[HTML][HTML] Forecasting: theory and practice

F Petropoulos, D Apiletti, V Assimakopoulos… - International Journal of …, 2022 - Elsevier
Forecasting has always been at the forefront of decision making and planning. The
uncertainty that surrounds the future is both exciting and challenging, with individuals and …

A review on outlier/anomaly detection in time series data

A Blázquez-García, A Conde, U Mori… - ACM computing surveys …, 2021 - dl.acm.org
Recent advances in technology have brought major breakthroughs in data collection,
enabling a large amount of data to be gathered over time and thus generating time series …

A comprehensive survey of anomaly detection techniques for high dimensional big data

S Thudumu, P Branch, J Jin, J Singh - Journal of Big Data, 2020 - Springer
Anomaly detection in high dimensional data is becoming a fundamental research problem
that has various applications in the real world. However, many existing anomaly detection …

Timeseries anomaly detection using temporal hierarchical one-class network

L Shen, Z Li, J Kwok - Advances in Neural Information …, 2020 - proceedings.neurips.cc
Real-world timeseries have complex underlying temporal dynamics and the detection of
anomalies is challenging. In this paper, we propose the Temporal Hierarchical One-Class …

Progress in outlier detection techniques: A survey

H Wang, MJ Bah, M Hammad - Ieee Access, 2019 - ieeexplore.ieee.org
Detecting outliers is a significant problem that has been studied in various research and
application areas. Researchers continue to design robust schemes to provide solutions to …