Distributed artificial intelligence empowered by end-edge-cloud computing: A survey

S Duan, D Wang, J Ren, F Lyu, Y Zhang… - … Surveys & Tutorials, 2022 - ieeexplore.ieee.org
As the computing paradigm shifts from cloud computing to end-edge-cloud computing, it
also supports artificial intelligence evolving from a centralized manner to a distributed one …

Split computing and early exiting for deep learning applications: Survey and research challenges

Y Matsubara, M Levorato, F Restuccia - ACM Computing Surveys, 2022 - dl.acm.org
Mobile devices such as smartphones and autonomous vehicles increasingly rely on deep
neural networks (DNNs) to execute complex inference tasks such as image classification …

Green edge AI: A contemporary survey

Y Mao, X Yu, K Huang, YJA Zhang… - Proceedings of the …, 2024 - ieeexplore.ieee.org
Artificial intelligence (AI) technologies have emerged as pivotal enablers across a multitude
of industries, including consumer electronics, healthcare, and manufacturing, largely due to …

Adaptive inference through early-exit networks: Design, challenges and directions

S Laskaridis, A Kouris, ND Lane - … of the 5th International Workshop on …, 2021 - dl.acm.org
DNNs are becoming less and less over-parametrised due to recent advances in efficient
model design, through careful hand-crafted or NAS-based methods. Relying on the fact that …

Band: coordinated multi-dnn inference on heterogeneous mobile processors

JS Jeong, J Lee, D Kim, C Jeon, C Jeong… - Proceedings of the 20th …, 2022 - dl.acm.org
The rapid development of deep learning algorithms, as well as innovative hardware
advancements, encourages multi-DNN workloads such as augmented reality applications …

Auto-split: A general framework of collaborative edge-cloud AI

A Banitalebi-Dehkordi, N Vedula, J Pei, F Xia… - Proceedings of the 27th …, 2021 - dl.acm.org
In many industry scale applications, large and resource consuming machine learning
models reside in powerful cloud servers. At the same time, large amounts of input data are …

Melon: Breaking the memory wall for resource-efficient on-device machine learning

Q Wang, M Xu, C Jin, X Dong, J Yuan, X Jin… - Proceedings of the 20th …, 2022 - dl.acm.org
On-device learning is a promising technique for emerging privacy-preserving machine
learning paradigms. However, through quantitative experiments, we find that commodity …

Socialized learning: A survey of the paradigm shift for edge intelligence in networked systems

X Wang, Y Zhao, C Qiu, Q Hu… - … Surveys & Tutorials, 2024 - ieeexplore.ieee.org
Amidst the robust impetus from artificial intelligence (AI) and big data, edge intelligence (EI)
has emerged as a nascent computing paradigm, synthesizing AI with edge computing (EC) …

AI on the edge: a comprehensive review

W Su, L Li, F Liu, M He, X Liang - Artificial Intelligence Review, 2022 - Springer
With the advent of the Internet of Everything, the proliferation of data has put a huge burden
on data centers and network bandwidth. To ease the pressure on data centers, edge …

A survey on collaborative DNN inference for edge intelligence

WQ Ren, YB Qu, C Dong, YQ Jing, H Sun… - Machine Intelligence …, 2023 - Springer
With the vigorous development of artificial intelligence (AI), intelligence applications based
on deep neural networks (DNNs) have changed people's lifestyles and production …