Activation functions in deep learning: A comprehensive survey and benchmark

SR Dubey, SK Singh, BB Chaudhuri - Neurocomputing, 2022 - Elsevier
Neural networks have shown tremendous growth in recent years to solve numerous
problems. Various types of neural networks have been introduced to deal with different types …

Review on deep learning applications in frequency analysis and control of modern power system

Y Zhang, X Shi, H Zhang, Y Cao, V Terzija - International Journal of …, 2022 - Elsevier
The penetration of renewable energy resources (RES) generation and the interconnection of
regional power grids in wide area and large scale have led the modern power system to …

Semi-supervised adversarial discriminative learning approach for intelligent fault diagnosis of wind turbine

T Han, W Xie, Z Pei - Information Sciences, 2023 - Elsevier
Wind turbines play a crucial role in renewable energy generation systems and are frequently
exposed to challenging operational environments. Monitoring and diagnosing potential …

An improved quantum-inspired differential evolution algorithm for deep belief network

W Deng, H Liu, J Xu, H Zhao… - IEEE Transactions on …, 2020 - ieeexplore.ieee.org
Deep belief network (DBN) is one of the most representative deep learning models.
However, it has a disadvantage that the network structure and parameters are basically …

Activation functions: Comparison of trends in practice and research for deep learning

C Nwankpa, W Ijomah, A Gachagan… - arXiv preprint arXiv …, 2018 - arxiv.org
Deep neural networks have been successfully used in diverse emerging domains to solve
real world complex problems with may more deep learning (DL) architectures, being …

fkan: Fractional kolmogorov-arnold networks with trainable jacobi basis functions

AA Aghaei - Neurocomputing, 2025 - Elsevier
Recent advancements in neural network design have given rise to the development of
Kolmogorov-Arnold Networks (KANs), which enhance interpretability and precision of these …

Data-driven methods for predictive maintenance of industrial equipment: A survey

W Zhang, D Yang, H Wang - IEEE systems journal, 2019 - ieeexplore.ieee.org
With the tremendous revival of artificial intelligence, predictive maintenance (PdM) based on
data-driven methods has become the most effective solution to address smart manufacturing …

Deep learning for prognostics and health management: State of the art, challenges, and opportunities

B Rezaeianjouybari, Y Shang - Measurement, 2020 - Elsevier
Improving the reliability of engineered systems is a crucial problem in many applications in
various engineering fields, such as aerospace, nuclear energy, and water declination …

How important are activation functions in regression and classification? A survey, performance comparison, and future directions

AD Jagtap, GE Karniadakis - Journal of Machine Learning for …, 2023 - dl.begellhouse.com
Inspired by biological neurons, the activation functions play an essential part in the learning
process of any artificial neural network (ANN) commonly used in many real-world problems …

Multiscale kernel based residual convolutional neural network for motor fault diagnosis under nonstationary conditions

R Liu, F Wang, B Yang, SJ Qin - IEEE Transactions on Industrial …, 2019 - ieeexplore.ieee.org
Motor fault diagnosis is imperative to enhance the reliability and security of industrial
systems. However, since motors are often operated under nonstationary conditions, the high …