Cloud detection for satellite imagery using attention-based U-Net convolutional neural network

Y Guo, X Cao, B Liu, M Gao - Symmetry, 2020 - mdpi.com
Cloud detection is an important and difficult task in the pre-processing of satellite remote
sensing data. The results of traditional cloud detection methods are often unsatisfactory in …

MFFNet: Multi-dimensional Feature Fusion Network based on attention mechanism for sEMG analysis to detect muscle fatigue

Y Zhang, S Chen, W Cao, P Guo, D Gao… - Expert Systems with …, 2021 - Elsevier
Muscle fatigue detection based on surface Electromyography (sEMG) is one of the essential
goals of human–computer interaction. The main challenge is that the sEMG signal is …

[HTML][HTML] Robust learning from corrupted EEG with dynamic spatial filtering

H Banville, SUN Wood, C Aimone, DA Engemann… - NeuroImage, 2022 - Elsevier
Building machine learning models using EEG recorded outside of the laboratory setting
requires methods robust to noisy data and randomly missing channels. This need is …

Decoding ECoG signal into 3D hand translation using deep learning

M Śliwowski, M Martin, A Souloumiac… - Journal of neural …, 2022 - iopscience.iop.org
Objective. Motor brain-computer interfaces (BCIs) are a promising technology that may
enable motor-impaired people to interact with their environment. BCIs would potentially …

Predicting collision cases at unsignalized intersections using EEG metrics and driving simulator platform

X Zhang, X Yan - Accident Analysis & Prevention, 2023 - Elsevier
Unsignalized intersection collision has been one of the most dangerous accidents in the
world. How to identify road hazards and predict the potential intersection collision ahead are …

Kcs-fcnet: Kernel cross-spectral functional connectivity network for eeg-based motor imagery classification

DG García-Murillo, AM Álvarez-Meza… - Diagnostics, 2023 - mdpi.com
This paper uses EEG data to introduce an approach for classifying right and left-hand
classes in Motor Imagery (MI) tasks. The Kernel Cross-Spectral Functional Connectivity …

Kernel-based regularized EEGNet using centered alignment and Gaussian connectivity for motor imagery discrimination

M Tobón-Henao, AM Álvarez-Meza… - Computers, 2023 - mdpi.com
Brain–computer interfaces (BCIs) from electroencephalography (EEG) provide a practical
approach to support human–technology interaction. In particular, motor imagery (MI) is a …

A machine learning framework to support multi-channel time series classification in BCI systems with preserved interpretability

M Tobón Henao - repositorio.unal.edu.co
Brain-Computer Interfaces (BCIs) based on Electroencephalography (EEG) have gained
significant attention as a practical approach for human-technology interaction. Motor …

Estrategia de procesamiento de señales EEG en sistemas BCI utilizando aprendizaje profundo y medidas de conectividad

YA Gomez Rivera - repositorio.unal.edu.co
Las Interfaces Cerebro Computadora (BCI) basadas en Electroencefalografía (EEG) crean
una conexión directa entre el cerebro humano y una computadora. Los paradigmas de …

[PDF][PDF] Deep learning methods for motor imagery detection from raw EEG: applications to brain-computer interfaces

O Avilov - 2021 - docnum.univ-lorraine.fr
Résumé Cette thèse présente trois contributions pour améliorer la reconnaissance
d'imaginations motrices utilisées par de nombreuses interfaces cerveau-ordinateur (BCI) …