Machine learning for alloys

GLW Hart, T Mueller, C Toher, S Curtarolo - Nature Reviews Materials, 2021 - nature.com
Alloy modelling has a history of machine-learning-like approaches, preceding the tide of
data-science-inspired work. The dawn of computational databases has made the integration …

Machine learning for high-entropy alloys: Progress, challenges and opportunities

X Liu, J Zhang, Z Pei - Progress in Materials Science, 2023 - Elsevier
High-entropy alloys (HEAs) have attracted extensive interest due to their exceptional
mechanical properties and the vast compositional space for new HEAs. However …

The MLIP package: moment tensor potentials with MPI and active learning

IS Novikov, K Gubaev, EV Podryabinkin… - Machine Learning …, 2020 - iopscience.iop.org
The subject of this paper is the technology (the'how') of constructing machine-learning
interatomic potentials, rather than science (the'what'and'why') of atomistic simulations using …

Machine learning for interatomic potential models

T Mueller, A Hernandez, C Wang - The Journal of chemical physics, 2020 - pubs.aip.org
The use of supervised machine learning to develop fast and accurate interatomic potential
models is transforming molecular and materials research by greatly accelerating atomic …

Irradiation effects in high-entropy alloys and their applications

Z Cheng, J Sun, X Gao, Y Wang, J Cui, T Wang… - Journal of Alloys and …, 2023 - Elsevier
On the one hand, Irradiation is everywhere and irradiation effect, especially the material
irradiation damage effect under strong irradiation field, is one of the key factors for the …

Machine-learning and high-throughput studies for high-entropy materials

EW Huang, WJ Lee, SS Singh, P Kumar, CY Lee… - Materials Science and …, 2022 - Elsevier
The combination of multiple-principal element materials, known as high-entropy materials
(HEMs), expands the multi-dimensional compositional space to gigantic stoichiometry. It is …

Atomic-scale simulations in multi-component alloys and compounds: a review on advances in interatomic potential

F Wang, HH Wu, L Dong, G Pan, X Zhou… - Journal of Materials …, 2023 - Elsevier
Multi-component alloys have demonstrated excellent performance in various applications,
but the vast range of possible compositions and microstructures makes it challenging to …

Composition design of high-entropy alloys with deep sets learning

J Zhang, C Cai, G Kim, Y Wang, W Chen - npj Computational Materials, 2022 - nature.com
High entropy alloys (HEAs) are an important material class in the development of next-
generation structural materials, but the astronomically large composition space cannot be …

Deep dive into machine learning density functional theory for materials science and chemistry

L Fiedler, K Shah, M Bussmann, A Cangi - Physical Review Materials, 2022 - APS
With the growth of computational resources, the scope of electronic structure simulations has
increased greatly. Artificial intelligence and robust data analysis hold the promise to …

Interpretable hardness prediction of high-entropy alloys through ensemble learning

YF Zhang, W Ren, WL Wang, N Li, YX Zhang… - Journal of Alloys and …, 2023 - Elsevier
With the development of artificial intelligence, machine learning has a wide range of
applications in the field of materials. The sparsity of data on the mechanical properties of …