Randomized sketching for Krylov approximations of large-scale matrix functions

S Güttel, M Schweitzer - SIAM Journal on Matrix Analysis and Applications, 2023 - SIAM
The computation of, the action of a matrix function on a vector, is a task arising in many
areas of scientific computing. In many applications, the matrix is sparse but so large that only …

Sketched and truncated polynomial Krylov methods: Evaluation of matrix functions

D Palitta, M Schweitzer… - Numerical Linear Algebra …, 2025 - Wiley Online Library
Among randomized numerical linear algebra strategies, so‐called sketching procedures are
emerging as effective reduction means to accelerate the computation of Krylov subspace …

Sketched and truncated polynomial krylov subspace methods: Matrix equations

D Palitta, M Schweitzer, V Simoncini - arXiv preprint arXiv:2311.16019, 2023 - arxiv.org
Thanks to its great potential in reducing both computational cost and memory requirements,
combining sketching and Krylov subspace techniques has attracted a lot of attention in the …

Sketched Lanczos uncertainty score: a low-memory summary of the Fisher information

M Miani, L Beretta, S Hauberg - arXiv preprint arXiv:2409.15008, 2024 - arxiv.org
Current uncertainty quantification is memory and compute expensive, which hinders
practical uptake. To counter, we develop Sketched Lanczos Uncertainty (SLU): an …

Sketched and truncated polynomial Krylov subspace methods: Matrix Sylvester equations

D Palitta, M Schweitzer, V Simoncini - Mathematics of Computation, 2024 - ams.org
Thanks to its great potential in reducing both computational cost and memory requirements,
combining sketching and Krylov subspace techniques has attracted a lot of attention in the …

Truncated LSQR for matrix least squares problems

L Piccinini, V Simoncini - Computational Optimization and Applications, 2024 - Springer
Truncated LSQR for matrix least squares problems | Computational Optimization and Applications
Skip to main content Springer Nature Link Account Menu Find a journal Publish with us Track …

Polynomial Preconditioning for the Action of the Matrix Square Root and Inverse Square Root

A Frommer, G Ramirez-Hidalgo, M Schweitzer… - arXiv preprint arXiv …, 2024 - arxiv.org
While preconditioning is a long-standing concept to accelerate iterative methods for linear
systems, generalizations to matrix functions are still in their infancy. We go a further step in …

TRUNCATED LSQR FOR MATRIX LEAST SQUARES PROBLEMS AND APPLICATION TO DICTIONARY LEARNING

V Simoncini, L Piccinini - 2024 - hal.science
We are interested in the numerical solution of the matrix least squares problem min X∈
R^{m× m}∥ AXB+ CXD-F∥ _F, with A and C full column rank, B, D full row rank, F an n× n …

[PDF][PDF] Randomized sketching for the nonlinear Arnoldi method

VP LITHELL - kth.se
We present a novel application of randomized sketching to the important area of nonlinear
eigenproblems. Our construction is motivated by the recent increase of interest in …