-convergence and stochastic homogenisation of singularly-perturbed elliptic functionals

A Bach, R Marziani, CI Zeppieri - Calculus of Variations and Partial …, 2023 - Springer
We study the limit behaviour of singularly-perturbed elliptic functionals of the form F k (u,
v)=∫ A v 2 fk (x,∇ u) dx+ 1 ε k∫ A gk (x, v, ε k∇ v) dx, where u is a vector-valued Sobolev …

Singular perturbation models in phase transitions for second-order materials

M Chermisi, GD Maso, I Fonseca, G Leoni - Indiana University Mathematics …, 2011 - JSTOR
A variational model proposed in the physics literature to describe the onset of pattern
formation in two-component bilayer membranes and amphiphilic monolayers leads to the …

Γ-convergence and stochastic homogenisation of phase-transition functionals

R Marziani - ESAIM: Control, Optimisation and Calculus of …, 2023 - esaim-cocv.org
In this paper, we study the asymptotics of singularly perturbed phase-transition functionals of
the formℱ k (u)= 1/ε k∫ A fk (𝑥, u, ε k∇ u) d𝑥, where u∈[0, 1] is a phase-field variable, ε k> …

[PDF][PDF] Gamma convergence and applications to phase transitions

G Leoni - CNA Lecture Notes, CMU, in preparation, 2013 - mat.univie.ac.at
the function u= bχE+ aχΩ\E is a solution of problem (P0). Here LN stands for the N-
dimensional Lebesgue measure. This lack of uniqueness is due the fact that interfaces …

Second-Order Edge-Penalization in the Ambrosio--Tortorelli functional

M Burger, T Esposito, CI Zeppieri - Multiscale Modeling & Simulation, 2015 - SIAM
We propose and study two variants of the Ambrosio--Tortorelli functional where the first-
order penalization of the edge variable v is replaced by a second-order term depending on …

–limit for a sharp interface model related to pattern formation on biomembranes

D Brazke, H Knüpfer, A Marciniak–Czochra - Calculus of Variations and …, 2023 - Springer
We derive a macroscopic limit for a sharp interface version of a model proposed in Komura
et al.(Langmuir 22: 6771–6774, 2006) to investigate pattern formation due to competition of …

-convergence and stochastic homogenisation of phase-transition functionals

R Marziani - arXiv preprint arXiv:2206.13131, 2022 - arxiv.org
In this paper we studythe asymptotics of singularly perturbed phase-transition functionals of
the form\[F_k (u)=\frac {1}{\epsilon_k}\int_A f_k (x, u,\epsilon_k\nabla u)\, dx\,,\] where $ u\in …

Sufficient conditions for global minimality of metastable states in a class of non-convex functionals: a simple approach via quadratic lower bounds

D Shirokoff, R Choksi, JC Nave - Journal of Nonlinear Science, 2015 - Springer
We consider mass-constrained minimizers for a class of non-convex energy functionals
involving a double-well potential. Based upon global quadratic lower bounds to the energy …

-Convergence and Stochastic Homogenization of Second-Order Singular Perturbation Models for Phase Transitions

AF Donnarumma - Journal of Nonlinear Science, 2025 - Springer
We study the effective behavior of random, heterogeneous, anisotropic, second-order phase
transitions energies that arise in the study of pattern formations in physical–chemical …

Asymptotic Expansion of a Non-local Isoperimetric Energy and Application to Mechanochemical Models related to Pattern Formation in Biological Membranes

D Brazke - 2024 - archiv.ub.uni-heidelberg.de
In this thesis, we derive a macroscopic limit for a sharp interface version of a modelproposed
by Komura, Shimokawa and Andelman (2006) to investigate pattern formationdue to …