[HTML][HTML] Machine learning meets advanced robotic manipulation

S Nahavandi, R Alizadehsani, D Nahavandi, CP Lim… - Information …, 2024 - Elsevier
Automated industries lead to high quality production, lower manufacturing cost and better
utilization of human resources. Robotic manipulator arms have major role in the automation …

Supervised policy update for deep reinforcement learning

Q Vuong, Y Zhang, KW Ross - arXiv preprint arXiv:1805.11706, 2018 - arxiv.org
We propose a new sample-efficient methodology, called Supervised Policy Update (SPU),
for deep reinforcement learning. Starting with data generated by the current policy, SPU …

Deep reinforcement learning collision avoidance using policy gradient optimisation and Q-learning

SA Maged, BH Mikhail - International Journal of …, 2020 - inderscienceonline.com
Usage of trust region policy optimisation (TRPO) and proximal policy optimisation
(PPO)'children of policy gradient optimisation method'and deep Q-learning network (DQN) in …

Reward Shaping and Performance Analysis of Proximal Policy Optimization for Quadrotor Navigation in Environments of Varying Complexity

IC Fleisje - 2023 - ntnuopen.ntnu.no
Utviklingen av autonome luftfartøy som kan utføre raske og smidige manøvrer i komplekse
omgivelser har vært utfordrende. Tradisjonell kontroll er avhengig av flere moduler som …

[图书][B] Robot Learning through Reinforcement Learning, Teleoperation and Scene Reconstruction

QH Vuong - 2022 - search.proquest.com
Designing agents that autonomously acquire skills to complete tasks in their environments
has been an ongoing research topic for decades. The complete realization of the vision …

[PDF][PDF] Využití strojového učení pro optimalizaci útočných strategií

T Pavuk - is.muni.cz
Vzniknutím simulátora kybernetických útokov je však možné pre skúmať možnosti
implementácie prostredia, na ktorom možno testo vať optimalizácie súvislej postupnosti …