Deep learning for 3d point clouds: A survey

Y Guo, H Wang, Q Hu, H Liu, L Liu… - IEEE transactions on …, 2020 - ieeexplore.ieee.org
Point cloud learning has lately attracted increasing attention due to its wide applications in
many areas, such as computer vision, autonomous driving, and robotics. As a dominating …

Deep learning for image and point cloud fusion in autonomous driving: A review

Y Cui, R Chen, W Chu, L Chen, D Tian… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Autonomous vehicles were experiencing rapid development in the past few years. However,
achieving full autonomy is not a trivial task, due to the nature of the complex and dynamic …

Pointnext: Revisiting pointnet++ with improved training and scaling strategies

G Qian, Y Li, H Peng, J Mai… - Advances in neural …, 2022 - proceedings.neurips.cc
PointNet++ is one of the most influential neural architectures for point cloud understanding.
Although the accuracy of PointNet++ has been largely surpassed by recent networks such …

Point transformer v2: Grouped vector attention and partition-based pooling

X Wu, Y Lao, L Jiang, X Liu… - Advances in Neural …, 2022 - proceedings.neurips.cc
As a pioneering work exploring transformer architecture for 3D point cloud understanding,
Point Transformer achieves impressive results on multiple highly competitive benchmarks. In …

Ulip: Learning a unified representation of language, images, and point clouds for 3d understanding

L Xue, M Gao, C Xing, R Martín-Martín… - Proceedings of the …, 2023 - openaccess.thecvf.com
The recognition capabilities of current state-of-the-art 3D models are limited by datasets with
a small number of annotated data and a pre-defined set of categories. In its 2D counterpart …

Stratified transformer for 3d point cloud segmentation

X Lai, J Liu, L Jiang, L Wang, H Zhao… - Proceedings of the …, 2022 - openaccess.thecvf.com
Abstract 3D point cloud segmentation has made tremendous progress in recent years. Most
current methods focus on aggregating local features, but fail to directly model long-range …

2dpass: 2d priors assisted semantic segmentation on lidar point clouds

X Yan, J Gao, C Zheng, C Zheng, R Zhang… - … on Computer Vision, 2022 - Springer
As camera and LiDAR sensors capture complementary information in autonomous driving,
great efforts have been made to conduct semantic segmentation through multi-modality data …

Point Transformer V3: Simpler Faster Stronger

X Wu, L Jiang, PS Wang, Z Liu, X Liu… - Proceedings of the …, 2024 - openaccess.thecvf.com
This paper is not motivated to seek innovation within the attention mechanism. Instead it
focuses on overcoming the existing trade-offs between accuracy and efficiency within the …

Rethinking network design and local geometry in point cloud: A simple residual MLP framework

X Ma, C Qin, H You, H Ran, Y Fu - arXiv preprint arXiv:2202.07123, 2022 - arxiv.org
Point cloud analysis is challenging due to irregularity and unordered data structure. To
capture the 3D geometries, prior works mainly rely on exploring sophisticated local …

Softgroup for 3d instance segmentation on point clouds

T Vu, K Kim, TM Luu, T Nguyen… - Proceedings of the …, 2022 - openaccess.thecvf.com
Existing state-of-the-art 3D instance segmentation methods perform semantic segmentation
followed by grouping. The hard predictions are made when performing semantic …