Spatio‐temporal adaptive graph convolutional networks for traffic flow forecasting

Q Ma, W Sun, J Gao, P Ma, M Shi - IET Intelligent Transport …, 2023 - Wiley Online Library
Accurate forecasting of traffic flow is crucial for intelligent traffic control and guidance. It is
very challenging to forecast the traffic flow due to the high non‐linearity, complexity and …

Multi-step ahead traffic speed prediction based on gated temporal graph convolution network

H Feng, X Jiang - Physica A: Statistical Mechanics and its Applications, 2022 - Elsevier
Improving the traffic efficiency of the existing roads in the city has become an important task
for the traffic management department. Timely and accurate traffic prediction is the key to …

A new perspective on traffic flow prediction: A graph spatial-temporal network with complex network information

Z Hu, F Shao, R Sun - Electronics, 2022 - mdpi.com
Traffic flow prediction provides support for travel management, vehicle scheduling, and
intelligent transportation system construction. In this work, a graph space–time network …

An efficient short-term traffic speed prediction model based on improved TCN and GCN

Z Hu, R Sun, F Shao, Y Sui - Sensors, 2021 - mdpi.com
Timely and accurate traffic speed predictions are an important part of the Intelligent
Transportation System (ITS), which provides data support for traffic control and guidance …

基于多周期组件时空神经网络的路网通行速度预测

杨建喜, 郁超顺, 李韧, 杜利芳, 蒋仕新, 王笛 - 交通运输系统工程与信息, 2021 - tseit.org.cn
针对当前路网通行速度预测方法存在的中长周期预测准确性和稳定性不足, 自适应路网拓扑空间
关系建模能力有待进一步提升等问题, 以多尺度卷积算子及门控循环单元为核心单元 …

Augmented multi-component recurrent graph convolutional network for traffic flow forecasting

C Zhang, HY Zhou, Q Qiu, Z Jian, D Zhu… - … International Journal of …, 2022 - mdpi.com
Due to the periodic and dynamic changes of traffic flow and the spatial–temporal coupling
interaction of complex road networks, traffic flow forecasting is highly challenging and rarely …

[PDF][PDF] 基于可变形卷积时空网络的乘车需求预测模型

于瑞云, 林福郁, 高宁蔚, 李婕 - 软件学报, 2021 - jos.org.cn
随着滴滴, Uber 等出租车服务的日益普及, 用户的乘车需求预测逐渐成为智慧城市,
智慧交通的重要组成部分. 准确的预测模型既可以满足用户的出行需求, 也可以降低道路车辆空 …

A diverse ensemble deep learning method for short-term traffic flow prediction based on spatiotemporal correlations

Y Zhang, D Xin - IEEE Transactions on Intelligent …, 2021 - ieeexplore.ieee.org
In this paper, considering spatiotemporal correlations, we propose a novel short-term traffic
flow prediction method that is based on diverse ensemble deep learning. First, a new …

基于时空图卷积神经网络的离港航班延误预测

姜雨, 陈名扬, 袁琪, 戴垚宇 - 北京航空航天大学学报, 2021 - bhxb.buaa.edu.cn
对于日益频发的机场航班延误, 精准的航班延误预测是最重要的防范措施之一.
通过谱图卷积将机场网络从不规则的图结构转换为规则的网络结构, 利用图卷积神经网络(GCN) …

PAG-TSN: Ridership Demand Forecasting Model for Shared Travel Services of Smart Transportation

J Li, F Lin, G Han, Y Wang, R Yu… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
With the increasing popularity of cab services such as Didi and Uber, cities are faced with
the challenge of high carbon emissions and traffic congestion. Ride-sharing services, as a …