Designing a built-in electric field for efficient energy electrocatalysis

X Zhao, M Liu, Y Wang, Y Xiong, P Yang, J Qin… - ACS …, 2022 - ACS Publications
To utilize intermittent renewable energy as well as achieve the goals of peak carbon dioxide
emissions and carbon neutrality, various electrocatalytic devices have been developed …

Sulfur reduction reaction in lithium–sulfur batteries: Mechanisms, catalysts, and characterization

L Zhou, DL Danilov, F Qiao, J Wang… - Advanced energy …, 2022 - Wiley Online Library
Lithium–sulfur batteries are one of the most promising alternatives for advanced battery
systems due to the merits of extraordinary theoretical specific energy density, abundant …

Recent Progress for Concurrent Realization of Shuttle‐Inhibition and Dendrite‐Free Lithium–Sulfur Batteries

W Yao, J Xu, L Ma, X Lu, D Luo, J Qian… - Advanced …, 2023 - Wiley Online Library
Abstract Lithium–sulfur (Li–S) batteries have become one of the most promising new‐
generation energy storage systems owing to their ultrahigh energy density (2600 Wh kg− 1) …

Heterostructures Regulating Lithium Polysulfides for Advanced Lithium‐Sulfur Batteries

T Wang, J He, Z Zhu, XB Cheng, J Zhu… - Advanced …, 2023 - Wiley Online Library
Sluggish reaction kinetics and severe shuttling effect of lithium polysulfides seriously hinder
the development of lithium‐sulfur batteries. Heterostructures, due to unique properties, have …

Enabling internal electric fields to enhance energy and environmental catalysis

L Chen, JT Ren, ZY Yuan - Advanced Energy Materials, 2023 - Wiley Online Library
Recent years have witnessed an upsurge of interest in exploiting advanced photo‐
/electrocatalysts for efficient energy conversion and environmental remediation …

Implanting single Zn atoms coupled with metallic Co nanoparticles into porous carbon nanosheets grafted with carbon nanotubes for high‐performance lithium‐sulfur …

R Wang, R Wu, X Yan, D Liu, P Guo… - Advanced Functional …, 2022 - Wiley Online Library
The electrochemical performance of lithium‐sulfur (Li‐S) batteries is severely hindered by
the sluggish sulfur redox kinetics and the shuttle effect of lithium polysulfides (LiPSs) …

Catalytic effect in Li-S batteries: From band theory to practical application

Z Han, R Gao, Y Jia, M Zhang, Z Lao, B Chen, Q Zhang… - Materials Today, 2022 - Elsevier
Abstract Lithium-sulfur (Li-S) batteries with high energy density have been considered one
kind of promising next-generation energy storage system. However, the shuttling effect of …

Fundamental, application and opportunities of single atom catalysts for Li-S batteries

T Zhou, J Liang, S Ye, Q Zhang, J Liu - Energy Storage Materials, 2023 - Elsevier
Li-S batteries are regarded as promising energy storage devices for future electric vehicles
(EVs) due to the advantages of high energy density and low cost. However, their practical …

Unraveling Polysulfide's Adsorption and Electrocatalytic Conversion on Metal Oxides for Li‐S Batteries

S Deng, T Guo, J Heier, C Zhang - Advanced Science, 2023 - Wiley Online Library
Abstract Lithium sulfur (Li S) batteries possess high theoretical capacity and energy
density, holding great promise for next generation electronics and electrical vehicles …

Delocalized Isoelectronic Heterostructured FeCoOxSy Catalysts with Tunable Electron Density for Accelerated Sulfur Redox Kinetics in Li‐S batteries

P Chen, T Wang, D He, T Shi, M Chen… - Angewandte …, 2023 - Wiley Online Library
High interconversion energy barriers, depressive reaction kinetics of sulfur species, and
sluggish Li+ transport inhibit the wide development of high‐energy‐density lithium sulfur …