Knowledge graphs: Opportunities and challenges

C Peng, F Xia, M Naseriparsa, F Osborne - Artificial Intelligence Review, 2023 - Springer
With the explosive growth of artificial intelligence (AI) and big data, it has become vitally
important to organize and represent the enormous volume of knowledge appropriately. As …

Toward better drug discovery with knowledge graph

X Zeng, X Tu, Y Liu, X Fu, Y Su - Current opinion in structural biology, 2022 - Elsevier
Drug discovery is the process of new drug identification. This process is driven by the
increasing data from existing chemical libraries and data banks. The knowledge graph is …

[HTML][HTML] Deep Learning applications for COVID-19

C Shorten, TM Khoshgoftaar, B Furht - Journal of big Data, 2021 - Springer
This survey explores how Deep Learning has battled the COVID-19 pandemic and provides
directions for future research on COVID-19. We cover Deep Learning applications in Natural …

Artificial intelligence for science in quantum, atomistic, and continuum systems

X Zhang, L Wang, J Helwig, Y Luo, C Fu, Y Xie… - arXiv preprint arXiv …, 2023 - arxiv.org
Advances in artificial intelligence (AI) are fueling a new paradigm of discoveries in natural
sciences. Today, AI has started to advance natural sciences by improving, accelerating, and …

Neural natural language processing for unstructured data in electronic health records: a review

I Li, J Pan, J Goldwasser, N Verma, WP Wong… - Computer Science …, 2022 - Elsevier
Electronic health records (EHRs), digital collections of patient healthcare events and
observations, are ubiquitous in medicine and critical to healthcare delivery, operations, and …

Defining a knowledge graph development process through a systematic review

G Tamašauskaitė, P Groth - ACM Transactions on Software Engineering …, 2023 - dl.acm.org
Knowledge graphs are widely used in industry and studied within the academic community.
However, the models applied in the development of knowledge graphs vary. Analysing and …

Temporal knowledge graph reasoning with historical contrastive learning

Y Xu, J Ou, H Xu, L Fu - Proceedings of the AAAI Conference on …, 2023 - ojs.aaai.org
Temporal knowledge graph, serving as an effective way to store and model dynamic
relations, shows promising prospects in event forecasting. However, most temporal …

Text mining approaches for dealing with the rapidly expanding literature on COVID-19

LL Wang, K Lo - Briefings in Bioinformatics, 2021 - academic.oup.com
More than 50 000 papers have been published about COVID-19 since the beginning of
2020 and several hundred new papers continue to be published every day. This incredible …

Torchdrug: A powerful and flexible machine learning platform for drug discovery

Z Zhu, C Shi, Z Zhang, S Liu, M Xu, X Yuan… - arXiv preprint arXiv …, 2022 - arxiv.org
Machine learning has huge potential to revolutionize the field of drug discovery and is
attracting increasing attention in recent years. However, lacking domain knowledge (eg …

Healthcare knowledge graph construction: A systematic review of the state-of-the-art, open issues, and opportunities

B Abu-Salih, M Al-Qurishi, M Alweshah, M Al-Smadi… - Journal of Big Data, 2023 - Springer
The incorporation of data analytics in the healthcare industry has made significant progress,
driven by the demand for efficient and effective big data analytics solutions. Knowledge …