Recent developments in problems with nonstandard growth and nonuniform ellipticity

G Mingione, V Rădulescu - Journal of Mathematical Analysis and …, 2021 - Elsevier
Recent developments in problems with nonstandard growth and nonuniform ellipticity -
ScienceDirect Skip to main contentSkip to article Elsevier logo Journals & Books Search …

A new class of double phase variable exponent problems: Existence and uniqueness

Á Crespo-Blanco, L Gasiński, P Harjulehto… - Journal of Differential …, 2022 - Elsevier
In this paper we introduce a new class of quasilinear elliptic equations driven by the so-
called double phase operator with variable exponents. We prove certain properties of the …

Regularity for double phase problems at nearly linear growth

C De Filippis, G Mingione - Archive for Rational Mechanics and Analysis, 2023 - Springer
Minima of functionals of the type w ↦ ∫ Ω | D w | log ( 1 + | D w | ) + a ( x ) | D w | q d x , 0 ≤
a ( · ) ∈ C 0 , α , \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} …

[图书][B] Partial differential equations in anisotropic Musielak-Orlicz spaces

Anisotropic and inhomogeneous spaces, which are at the core of the present study, may
appear exotic at first. However, the reader should abandon this impression once they realize …

Maximal regularity for local minimizers of non-autonomous functionals

P Hästö, J Ok - Journal of the European Mathematical Society, 2021 - ems.press
Maximal regularity for local minimizers of non-autonomous functionals Page 1 © 2021
European Mathematical Society Published by EMS Press. This work is licensed under a CC BY …

Nonuniformly elliptic Schauder theory

C De Filippis, G Mingione - Inventiones mathematicae, 2023 - Springer
Nonuniformly elliptic Schauder theory | Inventiones mathematicae Skip to main content
SpringerLink Account Menu Find a journal Publish with us Track your research Search Cart …

Hölder regularity for weak solutions to nonlocal double phase problems

SS Byun, J Ok, K Song - Journal de Mathématiques Pures et Appliquées, 2022 - Elsevier
We prove local boundedness and Hölder continuity for weak solutions to nonlocal double
phase problems concerning the following fractional energy functional∫ R n∫ R n| v (x)− v …

New embedding results for double phase problems with variable exponents and a priori bounds for corresponding generalized double phase problems

K Ho, P Winkert - Calculus of Variations and Partial Differential …, 2023 - Springer
In this paper we present new embedding results for Musielak–Orlicz Sobolev spaces of
double phase type. Based on the continuous embedding of W 1, H (Ω) into LH∗(Ω), where …

Lipschitz bounds for integral functionals with (p,q)-growth conditions

P Bella, M Schäffner - Advances in Calculus of Variations, 2024 - degruyter.com
We study local regularity properties of local minimizers of scalar integral functionals of the
form ℱ⁢[u]:=∫ Ω F⁢(∇⁡ u)-f⁢ u⁢ d⁢ x where the convex integrand F satisfies controlled (p …

Modular density of smooth functions in inhomogeneous and fully anisotropic Musielak–Orlicz–Sobolev spaces

M Borowski, I Chlebicka - Journal of Functional Analysis, 2022 - Elsevier
Modular density of smooth functions in inhomogeneous and fully anisotropic Musielak–Orlicz–Sobolev
spaces - ScienceDirect Skip to main contentSkip to article Elsevier logo Journals & Books …