Commutators in the two-weight setting

I Holmes, MT Lacey, BD Wick - Mathematische Annalen, 2017 - Springer
Let R be the vector of Riesz transforms on\mathbb R^ n R n, and let μ, λ ∈ A_p μ, λ∈ A p be
two weights on\mathbb R^ n R n, 1< p< ∞ 1< p<∞. The two-weight norm inequality for the …

A Hankel matrix acting on Hardy and Bergman spaces

P Galanopoulos, J Peláez - Studia Mathematica, 2010 - infona.pl
Let μ be a finite positive Borel measure on [0, 1). Let $ ℋ_ {μ}=(μ_ {n, k}) _ {n, k≥ 0} $ be the
Hankel matrix with entries $ μ_ {n, k}=∫ _ {[0, 1)} t^{n+ k} dμ (t) $. The matrix $ 𝓗_ {μ} …

The Dirichlet space: a survey

N Arcozzi, R Rochberg, E Sawyer, B Wick - arXiv preprint arXiv:1008.5342, 2010 - arxiv.org
In this paper we survey many results on the Dirichlet space of analytic functions. Our focus is
more on the classical Dirichlet space on the disc and not the potential generalizations to …

Hankel matrices acting on the Dirichlet space

G Bao, K Guo, F Sun, Z Wang - Journal of Fourier Analysis and …, 2024 - Springer
The study of the infinite Hankel matrix acting on analytic function spaces dates back to the
influential work of Nehari and Widom on the Hardy space H 2. Since then, it has been …

Potential theory on trees, graphs and Ahlfors-regular metric spaces

N Arcozzi, R Rochberg, ET Sawyer, BD Wick - Potential Analysis, 2014 - Springer
Potential Theory on Trees, Graphs and Ahlfors-regular Metric Spaces Page 1 Potential Anal
(2014) 41:317–366 DOI 10.1007/s11118-013-9371-8 Potential Theory on Trees, Graphs and …

Hankel operators, invariant subspaces, and cyclic vectors in the Drury-Arveson space

S Richter, J Sunkes - Proceedings of the American Mathematical Society, 2016 - ams.org
We show that every nonzero invariant subspace of the Drury-Arveson space $ H^ 2_d $ of
the unit ball of $\mathbb {C}^ d $ is an intersection of kernels of little Hankel operators. We …

Free outer functions in complete Pick spaces

A Aleman, M Hartz, J McCarthy, S Richter - Transactions of the American …, 2023 - ams.org
Jury and Martin establish an analogue of the classical inner-outer factorization of Hardy
space functions. They show that every function $ f $ in a Hilbert function space with a …

Weak products of complete Pick spaces

A Aleman, M Hartz, JE McCarthy, S Richter - Indiana University Mathematics …, 2021 - JSTOR
Let ℋ be the Drury-Arveson or Dirichlet space of the unit ball of ℂ d. The weak product ℋ⊙ ℋ
of ℋ is the collection of all functions h that can be written as h=∑ n= 1∞ fngn, where∑ n …

Weak factorization and Hankel forms for weighted Bergman spaces on the unit ball

J Pau, R Zhao - Mathematische Annalen, 2015 - Springer
We establish weak factorizations for a weighted Bergman space A^ p_ α A α p, with 1< p< ∞
1< p<∞, into two weighted Bergman spaces on the unit ball of C^ n C n. To obtain this result …

Function spaces related to the Dirichlet space

N Arcozzi, R Rochberg, E Sawyer… - Journal of the London …, 2011 - academic.oup.com
Function spaces related to the Dirichlet space Page 1 J. London Math. Soc. (2) 83 (2011) 1–18
Cо2010 London Mathematical Society doi:10.1112/jlms/jdq053 Function spaces related to the …