g-Natural Contact Metrics on Unit Tangent Sphere Bundles

MTK Abbassi, G Calvaruso - Monatshefte für Mathematik, 2007 - Springer
We construct a three-parameter family of contact metric structures on the unit tangent sphere
bundle T 1 M of a Riemannian manifold M and we study some of their special properties …

Spaces of Riemannian metrics

NK Smolentsev - Journal of Mathematical Sciences, 2007 - Springer
In this paper, we consider spaces M of Riemannian metrics on a closed manifold M. In the
case where the manifold M is equipped with a symplectic or contact structure, we consider …

Unit tangent sphere bundles and two-point homogeneous spaces

E Boeckx, D Perrone, L Vanhecke - Periodica Mathematica Hungarica, 1998 - Springer
We characterize two-point homogeneous spaces, locally symmetric spaces, C and B-spaces
via properties of the standard contact metric structure of their unit tangent sphere bundle …

On the classification of contact Riemannian manifolds satisfying the condition (C)

JT CHO, SUNH CHUN - Glasgow Mathematical Journal, 2003 - cambridge.org
ON THE CLASSIFICATION OF CONTACT RIEMANNIAN MANIFOLDS SATISFYING THE
CONDITION (C) Page 1 Glasgow Math. J. 45 (2003) 475–492. C 2003 Glasgow …

Contact metric geometry of the unit tangent sphere bundle

G Calvaruso - Complex, Contact and Symmetric Manifolds: In Honor …, 2005 - Springer
Contact Metric Geometry of the Unit Tangent Sphere Bundle Page 1 Contact Metric Geometry
of the Unit Tangent Sphere Bundle G. Calvaruso Dipartimento di Matematica “E. De Giorgi” …

[HTML][HTML] 单位球丛上L (g) 泛函变分问题

康恒 - Pure Mathematics, 2024 - hanspub.org
本文研究了紧切触度量流形(M, η, g) 上的L (g) 泛函, 该泛函是对Reeb 向量场方向的里奇曲率在
切触度量流形上的积分. 特别地, 我们考虑了紧黎曼流形的单位球丛这一特殊的切触度量流形 …

[PDF][PDF] Curvature properties of g-natural contact metric structures on unit tangent sphere bundles

MTKAG Calvaruso - Contributions to Algebra and Geometry, 2009 - emis.icm.edu.pl
Curvature Properties of g-natural Contact Metric Structures on Unit Tangent Sphere
Bundles Page 1 Beiträge zur Algebra und Geometrie Contributions to Algebra and …

[PDF][PDF] Flow-invariant structures on unit tangent bundles

E Boeckx, JT Cho, SH Chun - Publicationes Mathematicae, 2007 - scholar.archive.org
We study unit tangent bundles T1M for which the structural operator h= 1 2£ ξφ, its
characteristic derivative h=∇ ξh or the characteristic Jacobi operator l= R (·, ξ) ξ is invariant …

Unit tangent sphere bundles of two-point homogeneous spaces

JT Cho, SH Chun - Honam Mathematical Journal, 2019 - koreascience.kr
UNIT TANGENT SPHERE BUNDLES OF TWO-POINT HOMOGENEOUS SPACES Jong Taek
Cho and Sun Hyang Chun 1. Introduction An intriguing study Page 1 Honam Mathematical J …

Special directions on contact metric three-manifolds

D Perrone - Journal of Geometry, 2000 - Springer
Blair [5] has introduced special directions on a contact metric 3-manifolds with negative
sectional curvature for plane sections containing the characteristic vector field ξ and, when ξ …