NK Smolentsev - Journal of Mathematical Sciences, 2007 - Springer
In this paper, we consider spaces M of Riemannian metrics on a closed manifold M. In the case where the manifold M is equipped with a symplectic or contact structure, we consider …
E Boeckx, D Perrone, L Vanhecke - Periodica Mathematica Hungarica, 1998 - Springer
We characterize two-point homogeneous spaces, locally symmetric spaces, C and B-spaces via properties of the standard contact metric structure of their unit tangent sphere bundle …
G Calvaruso - Complex, Contact and Symmetric Manifolds: In Honor …, 2005 - Springer
Contact Metric Geometry of the Unit Tangent Sphere Bundle Page 1 Contact Metric Geometry of the Unit Tangent Sphere Bundle G. Calvaruso Dipartimento di Matematica “E. De Giorgi” …
MTKAG Calvaruso - Contributions to Algebra and Geometry, 2009 - emis.icm.edu.pl
Curvature Properties of g-natural Contact Metric Structures on Unit Tangent Sphere Bundles Page 1 Beiträge zur Algebra und Geometrie Contributions to Algebra and …
E Boeckx, JT Cho, SH Chun - Publicationes Mathematicae, 2007 - scholar.archive.org
We study unit tangent bundles T1M for which the structural operator h= 1 2£ ξφ, its characteristic derivative h=∇ ξh or the characteristic Jacobi operator l= R (·, ξ) ξ is invariant …
JT Cho, SH Chun - Honam Mathematical Journal, 2019 - koreascience.kr
UNIT TANGENT SPHERE BUNDLES OF TWO-POINT HOMOGENEOUS SPACES Jong Taek Cho and Sun Hyang Chun 1. Introduction An intriguing study Page 1 Honam Mathematical J …
Blair [5] has introduced special directions on a contact metric 3-manifolds with negative sectional curvature for plane sections containing the characteristic vector field ξ and, when ξ …