New striking analogies between H. Hahn's fields of generalised series with real coefficients, GH Hardy's field of germs of real valued functions, and JH Conway's field No of surreal …
A Fornasiero, N Lavi, S L'Innocente… - arXiv preprint arXiv …, 2024 - arxiv.org
A classical tool in the study of real closed fields are the fields $ K ((G)) $ of generalized power series (ie, formal sums with well-ordered support) with coefficients in a field $ K $ of …
S L'Innocente, V Mantova - arXiv preprint arXiv:1512.04895, 2015 - arxiv.org
A classical tool in the study of real closed fields are the fields $ K ((G)) $ of generalised power series (ie, formal sums with well-ordered support) with coefficients in a field $ K $ of …
S L'Innocente, V Mantova - Advances in Mathematics, 2024 - Elsevier
We prove that in every ring of generalised power series with non-positive real exponents and coefficients in a field of characteristic zero, every series admits a factorisation into finitely …
In the paper, Malcev rings are defined. The class of Malcev rings strictly contains rings of Malcev–Neumann series, formal skew Laurent series rings, and formal pseudo-differential …
ДА Туганбаев - Дискретная математика, 2008 - mathnet.ru
В статье определяются мальцевские кольца. Класс всех мальцевских колец строго содержит кольца рядов Мальцева–Неймана, кольца косых формальных рядов Лорана …
S L'Innocente, V Mantova - 2017 - eprints.whiterose.ac.uk
Fields of generalised power series (or Hahn fields), with coefficients in a field and exponents in a divisible ordered abelian group, are a fundamental tool in the study of valued and …