In this paper, we develop a detailed analysis of critical prewetting in the context of the two- dimensional Ising model. Namely, we consider a two-dimensional nearest-neighbor Ising …
P Caddeo, YH Kim, E Lubetzky - Forum of Mathematics, Sigma, 2024 - cambridge.org
We study the low-temperature $(2+ 1) $ D solid-on-solid model on with zero boundary conditions and nonnegative heights (a floor at height $0 $). Caputo et al.(2016) established …
The characterization of density correlations in the presence of strongly fluctuating interfaces has always been considered a difficult problem in statistical mechanics. Here we study-by …
R Gheissari, E Lubetzky - Electronic Journal of Probability, 2023 - projecteuclid.org
We study the interface of the Ising model in a box of side-length n in Z 3 at low temperature 1∕ β under Dobrushin's boundary conditions, conditioned to stay in a half-space above …
We study Glauber dynamics for the low temperature (2+ 1) D Solid-On-Solid model on a box of side-length n with a floor at height 0 (inducing entropic repulsion) and a competing bulk …
P Caputo, S Ganguly - arXiv preprint arXiv:2305.18280, 2023 - arxiv.org
We consider non-colliding Brownian lines above a hard wall, which are subject to geometrically growing (given by a parameter $\lambda> 1$) area tilts, which we call the …
This article is devoted to the study of the behaviour of a (1+ 1)-dimensional model of random walk conditioned to enclose an area of order $ N^ 2$. Such a conditioning enforces a …
Gibbsian line ensembles are families of Brownian lines arising in many natural contexts such as the level curves of three dimensional Ising interfaces, the solid-on-solid model, multi …
H Lacoin, S Yang - The Annals of Applied Probability, 2022 - projecteuclid.org
We study the dynamical behavior of a one dimensional interface interacting with a sticky impenetrable substrate or wall. The interface is subject to two effects going in opposite …