Data augmentation for brain-tumor segmentation: a review

J Nalepa, M Marcinkiewicz, M Kawulok - Frontiers in computational …, 2019 - frontiersin.org
Data augmentation is a popular technique which helps improve generalization capabilities
of deep neural networks, and can be perceived as implicit regularization. It plays a pivotal …

[HTML][HTML] Federated learning: a collaborative effort to achieve better medical imaging models for individual sites that have small labelled datasets

D Ng, X Lan, MMS Yao, WP Chan… - Quantitative Imaging in …, 2021 - ncbi.nlm.nih.gov
Despite the overall success of using artificial intelligence (AI) to assist radiologists in
performing computer-aided patient diagnosis, it remains challenging to build good models …

Swin unetr: Swin transformers for semantic segmentation of brain tumors in mri images

A Hatamizadeh, V Nath, Y Tang, D Yang… - International MICCAI …, 2021 - Springer
Semantic segmentation of brain tumors is a fundamental medical image analysis task
involving multiple MRI imaging modalities that can assist clinicians in diagnosing the patient …

The rsna-asnr-miccai brats 2021 benchmark on brain tumor segmentation and radiogenomic classification

U Baid, S Ghodasara, S Mohan, M Bilello… - arXiv preprint arXiv …, 2021 - arxiv.org
The BraTS 2021 challenge celebrates its 10th anniversary and is jointly organized by the
Radiological Society of North America (RSNA), the American Society of Neuroradiology …

[HTML][HTML] Brain tumor segmentation based on deep learning and an attention mechanism using MRI multi-modalities brain images

R Ranjbarzadeh, A Bagherian Kasgari… - Scientific Reports, 2021 - nature.com
Brain tumor localization and segmentation from magnetic resonance imaging (MRI) are hard
and important tasks for several applications in the field of medical analysis. As each brain …

SwinBTS: A method for 3D multimodal brain tumor segmentation using swin transformer

Y Jiang, Y Zhang, X Lin, J Dong, T Cheng, J Liang - Brain sciences, 2022 - mdpi.com
Brain tumor semantic segmentation is a critical medical image processing work, which aids
clinicians in diagnosing patients and determining the extent of lesions. Convolutional neural …

Data augmentation in classification and segmentation: A survey and new strategies

K Alomar, HI Aysel, X Cai - Journal of Imaging, 2023 - mdpi.com
In the past decade, deep neural networks, particularly convolutional neural networks, have
revolutionised computer vision. However, all deep learning models may require a large …

Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data

MJ Sheller, B Edwards, GA Reina, J Martin, S Pati… - Scientific reports, 2020 - nature.com
Several studies underscore the potential of deep learning in identifying complex patterns,
leading to diagnostic and prognostic biomarkers. Identifying sufficiently large and diverse …

nnU-Net for brain tumor segmentation

F Isensee, PF Jäger, PM Full, P Vollmuth… - … Sclerosis, Stroke and …, 2021 - Springer
We apply nnU-Net to the segmentation task of the BraTS 2020 challenge. The unmodified
nnU-Net baseline configuration already achieves a respectable result. By incorporating …

A robust volumetric transformer for accurate 3D tumor segmentation

H Peiris, M Hayat, Z Chen, G Egan… - International conference on …, 2022 - Springer
We propose a Transformer architecture for volumetric segmentation, a challenging task that
requires keeping a complex balance in encoding local and global spatial cues, and …