Gamma classes and quantum cohomology of Fano manifolds: gamma conjectures

S Galkin, V Golyshev, H Iritani - 2016 - projecteuclid.org
We propose Gamma conjectures for Fano manifolds which can be thought of as a square
root of the index theorem. Studying the exponential asymptotics of solutions to the quantum …

The monotone wrapped Fukaya category and the open-closed string map

AF Ritter, I Smith - Selecta Mathematica, 2017 - Springer
We build the wrapped Fukaya category W (E) W (E) for any monotone symplectic manifold E,
convex at infinity. We define the open-closed and closed-open string maps, OC: HH _*(W …

Gamma conjecture via mirror symmetry

S Galkin, H Iritani - arXiv preprint arXiv:1508.00719, 2014 - projecteuclid.org
The asymptotic behaviour of solutions to the quantum differential equation of a Fano
manifold F defines a characteristic class AF of F, called the principal asymptotic class …

Counter-examples to Gamma conjecture I

S Galkin, J Hu, H Iritani, H Ke, C Li, Z Su - arXiv preprint arXiv:2405.16979, 2024 - arxiv.org
We investigate Gamma conjecture I and its underlying Conjecture $\mathcal {O} $ for the
$\mathbb {P}^ 1$-bundles $ X_n=\mathbb {P} _ {\mathbb {P}^{n}}(\mathcal {O}\oplus\mathcal …

Quasi-morphisms and quasi-states in symplectic topology

M Entov - arXiv preprint arXiv:1404.6408, 2014 - arxiv.org
This is a survey about certain" almost homomorphisms" and" almost linear" functionals
(called quasi-morphisms and quasi-states) in symplectic topology and their applications to …

Gamma conjecture I for del Pezzo surfaces

J Hu, H Ke, C Li, T Yang - Advances in Mathematics, 2021 - Elsevier
Gamma conjecture I and the underlying Conjecture O for Fano manifolds were proposed by
Galkin, Golyshev and Iritani recently. We show that both conjectures hold for all two …

Circle actions, quantum cohomology, and the Fukaya category of Fano toric varieties

A Ritter - Geometry & Topology, 2016 - msp.org
Circle actions, quantum cohomology, and the Fukaya category of Fano toric varieties Page 1
msp Geometry & Topology 20 (2016) 1941–2052 Circle actions, quantum cohomology, and the …

[HTML][HTML] On the conjecture O of GGI for G/P

D Cheong, C Li - Advances in Mathematics, 2017 - Elsevier
In this paper, we show that general homogeneous manifolds G/P satisfy Conjecture O of
Galkin, Golyshev and Iritani which 'underlies' Gamma conjectures I and II of them. Our main …

On Galkin's Lower Bound Conjecture

J Hu, H Ke, C Li, Z Su - arXiv preprint arXiv:2405.16987, 2024 - arxiv.org
We estimate an upper bound of the spectral radius of a linear operator on the quantum
cohomology of the toric Fano manifolds $\mathbb {P} _ {\mathbb {P}^{n}}(\mathcal …

[PDF][PDF] On Conjecture for projective complete intersections

HZ Ke - arXiv preprint arXiv:1809.10869, 2018 - arxiv.org
arXiv:1809.10869v1 [math.AG] 28 Sep 2018 Page 1 arXiv:1809.10869v1 [math.AG] 28 Sep
2018 ON CONJECTURE O FOR PROJECTIVE COMPLETE INTERSECTIONS HUA-ZHONG …