Recent advances on federated learning for cybersecurity and cybersecurity for federated learning for internet of things

B Ghimire, DB Rawat - IEEE Internet of Things Journal, 2022 - ieeexplore.ieee.org
Decentralized paradigm in the field of cybersecurity and machine learning (ML) for the
emerging Internet of Things (IoT) has gained a lot of attention from the government …

A comprehensive survey of privacy-preserving federated learning: A taxonomy, review, and future directions

X Yin, Y Zhu, J Hu - ACM Computing Surveys (CSUR), 2021 - dl.acm.org
The past four years have witnessed the rapid development of federated learning (FL).
However, new privacy concerns have also emerged during the aggregation of the …

Federated learning on non-IID data: A survey

H Zhu, J Xu, S Liu, Y Jin - Neurocomputing, 2021 - Elsevier
Federated learning is an emerging distributed machine learning framework for privacy
preservation. However, models trained in federated learning usually have worse …

Federated learning for internet of things: Recent advances, taxonomy, and open challenges

LU Khan, W Saad, Z Han, E Hossain… - … Surveys & Tutorials, 2021 - ieeexplore.ieee.org
The Internet of Things (IoT) will be ripe for the deployment of novel machine learning
algorithm for both network and application management. However, given the presence of …

[HTML][HTML] A survey on federated learning: challenges and applications

J Wen, Z Zhang, Y Lan, Z Cui, J Cai… - International Journal of …, 2023 - Springer
Federated learning (FL) is a secure distributed machine learning paradigm that addresses
the issue of data silos in building a joint model. Its unique distributed training mode and the …

Privacy-preserving Byzantine-robust federated learning via blockchain systems

Y Miao, Z Liu, H Li, KKR Choo… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Federated learning enables clients to train a machine learning model jointly without sharing
their local data. However, due to the centrality of federated learning framework and the …

Fate: An industrial grade platform for collaborative learning with data protection

Y Liu, T Fan, T Chen, Q Xu, Q Yang - Journal of Machine Learning …, 2021 - jmlr.org
Collaborative and federated learning has become an emerging solution to many industrial
applications where data values from different sites are exploit jointly with privacy protection …

[HTML][HTML] Privacy preserving machine learning with homomorphic encryption and federated learning

H Fang, Q Qian - Future Internet, 2021 - mdpi.com
Privacy protection has been an important concern with the great success of machine
learning. In this paper, it proposes a multi-party privacy preserving machine learning …

Homomorphic encryption-based privacy-preserving federated learning in IoT-enabled healthcare system

L Zhang, J Xu, P Vijayakumar… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
In this work, the federated learning mechanism is introduced into the deep learning of
medical models in Internet of Things (IoT)-based healthcare system. Cryptographic …

From distributed machine learning to federated learning: A survey

J Liu, J Huang, Y Zhou, X Li, S Ji, H Xiong… - … and Information Systems, 2022 - Springer
In recent years, data and computing resources are typically distributed in the devices of end
users, various regions or organizations. Because of laws or regulations, the distributed data …