[HTML][HTML] Toward Digital Periodontal Health: Recent Advances and Future Perspectives

F Soheili, N Delfan, N Masoudifar, S Ebrahimni… - Bioengineering, 2024 - mdpi.com
Periodontal diseases, ranging from gingivitis to periodontitis, are prevalent oral diseases
affecting over 50% of the global population. These diseases arise from infections and …

Application of artificial intelligence-based detection of furcation involvement in mandibular first molar using cone beam tomography images-a preliminary study

S Shetty, W Talaat, S AlKawas, N Al-Rawi, S Reddy… - BMC Oral Health, 2024 - Springer
Radiographs play a key role in diagnosis of periodontal diseases. Deep learning models
have been explored for image analysis in periodontal diseases. However, there is lacuna of …

ADGRU: Adaptive DenseNet with gated recurrent unit for automatic diagnosis of periodontal bone loss and stage periodontitis with tooth segmentation mechanism

MSA Vigil, V Gowri, SSS Ramesh, MSB Praba… - Clinical Oral …, 2024 - Springer
Background Periodontics and gingivitis are two of the most widely prevalent illnesses that
affect people nowadays. The sixth most common disease in the world is periodontitis, and …

Deep Convolutional Neural Network for Automated Staging of Periodontal Bone Loss Severity on Bite-wing Radiographs: An Eigen-CAM Explainability Mapping …

M Erturk, MÜ Öziç, M Tassoker - Journal of Imaging Informatics in Medicine, 2024 - Springer
Periodontal disease is a significant global oral health problem. Radiographic staging is
critical in determining periodontitis severity and treatment requirements. This study aims to …

[HTML][HTML] Classification of Periapical and Bitewing Radiographs as Periodontally Healthy or Diseased by Deep Learning Algorithms

MB Yavuz, N Sali, SK Bayrakdar, C Ekşi, BS İmamoğlu… - Cureus, 2024 - ncbi.nlm.nih.gov
Objectives The aim of this artificial intelligence (AI) study was to develop a deep learning
algorithm capable of automatically classifying periapical and bitewing radiography images …

Enhancing Furcation Involvement Classification on Panoramic Radiographs with Vision Transformers

X Zhang, E Guo, X Liu, H Zhao, J Yang, W Li, W Wu… - 2024 - researchsquare.com
Background The severity of furcation involvement (FI) directly affects tooth prognosis and
influences treatment approaches. However, assessing, diagnosing, and treating molars with …

[PDF][PDF] Artificial Intelligence Commingled with Periodontics Domain: A Narrative Review

S Munjal, A Tripathi, S Munjal… - Journal of Oral Health and …, 2024 - researchgate.net
Aim: Evidence-based approach is reiterated in periodontology for strategic need of
intervention. The changing face of the profession by AI integration is welcome. Background …

Development and Validation of a Polyfit Approach for Assessing Alveolar Bone Loss Using Panoramic Radiography

E Tian, J Hong, Z Tang, R Ren, S Li, AA Abdulqader… - 2024 - researchsquare.com
Background Panoramic radiographs (PAN) are one of the most common diagnostic tools in
clinical practice. Periodontal disease, the second most prevalent oral disease, significantly …

Primjena umjetne inteligencije u dentalnoj medicini-mišljenje i informiranost studenta dentalne medicine Fakulteta za dentalnu medicinu i zdravstvo u Osijeku

A Lilić-Pekas - 2024 - zir.nsk.hr
Sažetak Cilj istraživanja: Cilj istraživanja bio je ispitati mišljenja i informiranost studenata
dentalne medicine Fakulteta za dentalnu medicinu i zdravstvo u Osijeku o primjeni umjetne …

[PDF][PDF] ШТУЧНИЙ ІНТЕЛЕКТ У ВИЩІЙ МЕДИЧНІЙ ОСВІТІ: МОЖЛИВОСТІ ТА ПЕРСПЕКТИВИ ВИКОРИСТАННЯ

НГ Гаджула, ТВ Федик, АМ Квірікашвілі - Редакційна колегія, 2024 - repo.knmu.edu.ua
Штучний інтелект (ШІ) досяг значного прогресу у сфері охорони здоров'я. Нові
технології швидко розвиваються та впроваджуються в усі галузі медицини, у тому числі …