Deep-learning seismology

SM Mousavi, GC Beroza - Science, 2022 - science.org
Seismic waves from earthquakes and other sources are used to infer the structure and
properties of Earth's interior. The availability of large-scale seismic datasets and the …

Deep learning for geophysics: Current and future trends

S Yu, J Ma - Reviews of Geophysics, 2021 - Wiley Online Library
Recently deep learning (DL), as a new data‐driven technique compared to conventional
approaches, has attracted increasing attention in geophysical community, resulting in many …

Physics‐informed neural networks (PINNs) for wave propagation and full waveform inversions

M Rasht‐Behesht, C Huber, K Shukla… - Journal of …, 2022 - Wiley Online Library
We propose a new approach to the solution of the wave propagation and full waveform
inversions (FWIs) based on a recent advance in deep learning called physics‐informed …

Deep learning techniques for inverse problems in imaging

G Ongie, A Jalal, CA Metzler… - IEEE Journal on …, 2020 - ieeexplore.ieee.org
Recent work in machine learning shows that deep neural networks can be used to solve a
wide variety of inverse problems arising in computational imaging. We explore the central …

Tackling climate change with machine learning

D Rolnick, PL Donti, LH Kaack, K Kochanski… - ACM Computing …, 2022 - dl.acm.org
Climate change is one of the greatest challenges facing humanity, and we, as machine
learning (ML) experts, may wonder how we can help. Here we describe how ML can be a …

Machine learning for data-driven discovery in solid Earth geoscience

KJ Bergen, PA Johnson, MV de Hoop, GC Beroza - Science, 2019 - science.org
BACKGROUND The solid Earth, oceans, and atmosphere together form a complex
interacting geosystem. Processes relevant to understanding Earth's geosystem behavior …

Deep-learning inversion: A next-generation seismic velocity model building method

F Yang, J Ma - Geophysics, 2019 - library.seg.org
Seismic velocity is one of the most important parameters used in seismic exploration.
Accurate velocity models are the key prerequisites for reverse time migration and other high …

Machine learning in seismology: Turning data into insights

Q Kong, DT Trugman, ZE Ross… - Seismological …, 2019 - pubs.geoscienceworld.org
This article provides an overview of current applications of machine learning (ML) in
seismology. ML techniques are becoming increasingly widespread in seismology, with …

Convolutional neural network for seismic impedance inversion

V Das, A Pollack, U Wollner, T Mukerji - Geophysics, 2019 - library.seg.org
We have addressed the geophysical problem of obtaining an elastic model of the
subsurface from recorded normal-incidence seismic data using convolutional neural …

Deep-learning inversion of seismic data

S Li, B Liu, Y Ren, Y Chen, S Yang, Y Wang… - arXiv preprint arXiv …, 2019 - arxiv.org
We propose a new method to tackle the mapping challenge from time-series data to spatial
image in the field of seismic exploration, ie, reconstructing the velocity model directly from …