Neural ADMIXTURE for rapid genomic clustering

A Dominguez Mantes, D Mas Montserrat… - Nature computational …, 2023 - nature.com
Characterizing the genetic structure of large cohorts has become increasingly important as
genetic studies extend to massive, increasingly diverse biobanks. Popular methods …

3DMolNet: a generative network for molecular structures

V Nesterov, M Wieser, V Roth - arXiv preprint arXiv:2010.06477, 2020 - arxiv.org
With the recent advances in machine learning for quantum chemistry, it is now possible to
predict the chemical properties of compounds and to generate novel molecules. Existing …

Non-linear archetypal analysis of single-cell RNA-seq data by deep autoencoders

Y Wang, H Zhao - PLoS computational biology, 2022 - journals.plos.org
Advances in single-cell RNA sequencing (scRNA-seq) have led to successes in discovering
novel cell types and understanding cellular heterogeneity among complex cell populations …

Sugarcane biomass prediction with multi-mode remote sensing data using deep archetypal analysis and integrated learning

Z Wang, Y Lu, G Zhao, C Sun, F Zhang, S He - Remote Sensing, 2022 - mdpi.com
The use of multi-mode remote sensing data for biomass prediction is of potential value to aid
planting management and yield maximization. In this study, an advanced biomass …

[PDF][PDF] Bagaimana Pembelajaran Edugame Perilaku Hidup Bersih dan Sehat (PHBS) Mempengaruhi Perubahan Sikap dan Perilaku Siswa?

RL Marsofely, Y Setiawan - Jurnal Obsesi: Jurnal Pendidikan …, 2023 - scholar.archive.org
Kelompok yang rentan terserang penyakit adalah kelompok anak-anak, yang memiliki
permasalahan Kesehatan terutama sejak usia dini. Penyakit yang sering terjadi pada …

Self-supervised representation learning for high-content screening

D Siegismund, M Wieser, S Heyse… - … on Medical Imaging …, 2022 - proceedings.mlr.press
Biopharma drug discovery requires a set of approaches to find, produce, and test the safety
of drugs for clinical application. A crucial part involves image-based screening of cell culture …

Learning invariances with generalised input-convex neural networks

V Nesterov, FA Torres, M Nagy-Huber… - arXiv preprint arXiv …, 2022 - arxiv.org
Considering smooth mappings from input vectors to continuous targets, our goal is to
characterise subspaces of the input domain, which are invariant under such mappings …

Archetypal analysis of geophysical data illustrated by sea surface temperature

AS Black, DP Monselesan, JS Risbey… - … Intelligence for the …, 2022 - journals.ametsoc.org
The ability to find and recognize patterns in high-dimensional geophysical data is
fundamental to climate science and critical for meaningful interpretation of weather and …

Neural admixture: rapid population clustering with autoencoders

AD Mantes, DM Montserrat, CD Bustamante… - bioRxiv, 2021 - biorxiv.org
Characterizing the genetic substructure of large cohorts has become increasingly important
as genetic association and prediction studies are extended to massive, increasingly diverse …

Biarchetype analysis: simultaneous learning of observations and features based on extremes

A Alcacer, I Epifanio… - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
We introduce a novel exploratory technique, termed biarchetype analysis, which extends
archetype analysis to simultaneously identify archetypes of both observations and features …