A comprehensive review of digital twin—part 1: modeling and twinning enabling technologies

A Thelen, X Zhang, O Fink, Y Lu, S Ghosh… - Structural and …, 2022 - Springer
As an emerging technology in the era of Industry 4.0, digital twin is gaining unprecedented
attention because of its promise to further optimize process design, quality control, health …

Transfer learning algorithms for bearing remaining useful life prediction: A comprehensive review from an industrial application perspective

J Chen, R Huang, Z Chen, W Mao, W Li - Mechanical Systems and Signal …, 2023 - Elsevier
Accurate remaining useful life (RUL) prediction for rolling bearings encounters many
challenges such as complex degradation processes, varying working conditions, and …

[HTML][HTML] Predictive maintenance enabled by machine learning: Use cases and challenges in the automotive industry

A Theissler, J Pérez-Velázquez, M Kettelgerdes… - Reliability engineering & …, 2021 - Elsevier
Recent developments in maintenance modelling fueled by data-based approaches such as
machine learning (ML), have enabled a broad range of applications. In the automotive …

Fault diagnosis in rotating machines based on transfer learning: Literature review

I Misbah, CKM Lee, KL Keung - Knowledge-Based Systems, 2024 - Elsevier
With the emergence of machine learning methods, data-driven fault diagnosis has gained
significant attention in recent years. However, traditional data-driven diagnosis approaches …

[HTML][HTML] Remaining Useful Life prediction and challenges: A literature review on the use of Machine Learning Methods

C Ferreira, G Gonçalves - Journal of Manufacturing Systems, 2022 - Elsevier
Abstract Approaches such as Cyber-Physical Systems (CPS), Internet of Things (IoT),
Internet of Services (IoS), and Data Analytics have built a new paradigm called Industry 4.0 …

A variational local weighted deep sub-domain adaptation network for remaining useful life prediction facing cross-domain condition

J Zhang, X Li, J Tian, Y Jiang, H Luo, S Yin - Reliability Engineering & …, 2023 - Elsevier
Most supervised learning-based approaches follow the assumptions that offline data and
online data must obey a similar distribution, which is difficult to satisfy in realistic remaining …

Remaining useful life prediction with partial sensor malfunctions using deep adversarial networks

X Li, Y Xu, N Li, B Yang, Y Lei - IEEE/CAA Journal of …, 2022 - ieeexplore.ieee.org
In recent years, intelligent data-driven prognostic methods have been successfully
developed, and good machinery health assessment performance has been achieved …

A survey of transfer learning for machinery diagnostics and prognostics

S Yao, Q Kang, MC Zhou, MJ Rawa… - Artificial Intelligence …, 2023 - Springer
In industrial manufacturing systems, failures of machines caused by faults in their key
components greatly influence operational safety and system reliability. Many data-driven …

Bayesian transfer learning with active querying for intelligent cross-machine fault prognosis under limited data

R Zhu, W Peng, D Wang, CG Huang - Mechanical Systems and Signal …, 2023 - Elsevier
Most existing deep learning (DL)-based health prognostic methods assume that the training
and testing datasets are from identical machines operating under similar conditions …

Aircraft engine run-to-failure dataset under real flight conditions for prognostics and diagnostics

M Arias Chao, C Kulkarni, K Goebel, O Fink - Data, 2021 - mdpi.com
A key enabler of intelligent maintenance systems is the ability to predict the remaining useful
lifetime (RUL) of its components, ie, prognostics. The development of data-driven …