Classification and fast few-shot learning of steel surface defects with randomized network

AM Nagy, L Czúni - Applied Sciences, 2022 - mdpi.com
Quality inspection is inevitable in the steel industry so there are already benchmark datasets
for the visual inspection of steel surface defects. In our work, we show, contrary to previous …

A graph guided convolutional neural network for surface defect recognition

Y Wang, L Gao, Y Gao, X Li - IEEE Transactions on Automation …, 2022 - ieeexplore.ieee.org
Surface defect is a serious problem in real-world manufacturing system and it is important to
use vision-based recognition to ensure the surface quality of products. Currently, due to the …

Zero-shot learning and classification of steel surface defects

AM Nagy, L Czúni - Fourteenth International Conference on …, 2022 - spiedigitallibrary.org
Due to the manufacturing process and environmental effects steel surfaces can have a
variety of defects. The nonuniform surface brightness and the variety of shapes of defects …

Benchmarking distance functions in Siamese networks for current and prior mammogram image analysis

S Hamzehei, AA Jeny, A Jin, C Yang… - … on Bioinformatics and …, 2024 - ieeexplore.ieee.org
Mammogram image analysis has benefited from advancements in artificial intelligence (AI),
particularly through the use of Siamese networks, which, similar to radiologists, compare …

[PDF][PDF] Recognizing steel elements with BRDF and k-nearest neighbors

A Ciszkiewicz, J Jaglarz, T Uhl - Metrology and Measurement …, 2023 - journals.pan.pl
The paper deals with analysis of recognition of surface quality with reflective structures.
Such surfaces are common in metallic materials cut using a saw or polished. There are no …

Discriminative feature learning through feature distance loss

T Schlagenhauf, Y Lin, B Noack - Machine Vision and Applications, 2023 - Springer
Ensembles of convolutional neural networks have shown remarkable results in learning
discriminative semantic features for image classification tasks. However, the models in the …

Обнаружение дефектов твердых поверхностей при ограниченном объеме данных на основе SSD-детектора и сиамских сетей

НП Новгородцев, КА Батурина… - … , механики и оптики, 2024 - ntv.elpub.ru
Аннотация Введение. Представлен алгоритм решения задачи обнаружения дефектов
твердых поверхностей при обучении на нулевом или малом числе примеров, который …

Surface defect detection with limited data based on SSD detector and Siamese networks

NP Novgorodcev, KA Baturina, VA Efimova, AA Shalyto - 2024 - ntv.ifmo.ru
This study presents an algorithm for the problem of detecting defects on hard surfaces when
trained with zero or a small number of examples, addressing the challenge of limited data …

[PDF][PDF] Bildbasierte Quantifizierung und Prognose des Verschleißes an Kugelgewindetriebspindeln

IG Lanza, T Schlagenhauf - scholar.archive.org
For the realization of autonomous production machines, it is necessary to enable them to
independently assess the condition of their components and, in a medium-term step, inform …

Image identification and retrieval for component fault analysis

D Tricarico, A Neri, G Tomasino, DP Cavallo… - US Patent …, 2022 - Google Patents
A method of identifying and retrieving component digital images for component fault analysis
includes generating a known-fault database of digital images of known faults of a previously …