A comprehensive overview of large language models

H Naveed, AU Khan, S Qiu, M Saqib, S Anwar… - arXiv preprint arXiv …, 2023 - arxiv.org
Large Language Models (LLMs) have recently demonstrated remarkable capabilities in
natural language processing tasks and beyond. This success of LLMs has led to a large …

Large language models for software engineering: A systematic literature review

X Hou, Y Zhao, Y Liu, Z Yang, K Wang, L Li… - ACM Transactions on …, 2024 - dl.acm.org
Large Language Models (LLMs) have significantly impacted numerous domains, including
Software Engineering (SE). Many recent publications have explored LLMs applied to …

Judging llm-as-a-judge with mt-bench and chatbot arena

L Zheng, WL Chiang, Y Sheng… - Advances in …, 2023 - proceedings.neurips.cc
Evaluating large language model (LLM) based chat assistants is challenging due to their
broad capabilities and the inadequacy of existing benchmarks in measuring human …

Llama 2: Open foundation and fine-tuned chat models

H Touvron, L Martin, K Stone, P Albert… - arXiv preprint arXiv …, 2023 - arxiv.org
In this work, we develop and release Llama 2, a collection of pretrained and fine-tuned large
language models (LLMs) ranging in scale from 7 billion to 70 billion parameters. Our fine …

Qlora: Efficient finetuning of quantized llms

T Dettmers, A Pagnoni, A Holtzman… - Advances in Neural …, 2024 - proceedings.neurips.cc
We present QLoRA, an efficient finetuning approach that reduces memory usage enough to
finetune a 65B parameter model on a single 48GB GPU while preserving full 16-bit …

Minigpt-4: Enhancing vision-language understanding with advanced large language models

D Zhu, J Chen, X Shen, X Li, M Elhoseiny - arXiv preprint arXiv …, 2023 - arxiv.org
The recent GPT-4 has demonstrated extraordinary multi-modal abilities, such as directly
generating websites from handwritten text and identifying humorous elements within …

Hugginggpt: Solving ai tasks with chatgpt and its friends in hugging face

Y Shen, K Song, X Tan, D Li, W Lu… - Advances in Neural …, 2024 - proceedings.neurips.cc
Solving complicated AI tasks with different domains and modalities is a key step toward
artificial general intelligence. While there are numerous AI models available for various …

Mmbench: Is your multi-modal model an all-around player?

Y Liu, H Duan, Y Zhang, B Li, S Zhang, W Zhao… - … on Computer Vision, 2025 - Springer
Large vision-language models (VLMs) have recently achieved remarkable progress,
exhibiting impressive multimodal perception and reasoning abilities. However, effectively …

Lima: Less is more for alignment

C Zhou, P Liu, P Xu, S Iyer, J Sun… - Advances in …, 2024 - proceedings.neurips.cc
Large language models are trained in two stages:(1) unsupervised pretraining from raw text,
to learn general-purpose representations, and (2) large scale instruction tuning and …

Sharegpt4v: Improving large multi-modal models with better captions

L Chen, J Li, X Dong, P Zhang, C He, J Wang… - … on Computer Vision, 2025 - Springer
Modality alignment serves as the cornerstone for large multi-modal models (LMMs).
However, the impact of different attributes (eg, data type, quality, and scale) of training data …