Задача Канторовича оптимальной транспортировки мер: новые направления исследований

ВИ Богачев - Успехи математических наук, 2022 - mathnet.ru
В работе дан обзор исследований последнего десятилетия и приведены новые
результаты по различным новым модификациям классической задачи Канторовича …

Kantorovich problem of optimal transportation of measures: new directions of research

VI Bogachev - Uspekhi Matematicheskikh Nauk, 2022 - mathnet.ru
VI Bogachev, “Kantorovich problem of optimal transportation of measures: new directions of
research”, Uspekhi Mat. Nauk, 77:5(467) (2022), 3–52; Russian Math. Surveys, 77:5 (2022) …

The Wasserstein space of stochastic processes

D Bartl, M Beiglböck, G Pammer - Journal of the European Mathematical …, 2024 - ems.press
Wasserstein distance induces a natural Riemannian structure for the probabilities on the
Euclidean space. This insight of classical transport theory is fundamental for tremendous …

The Knothe-Rosenblatt distance and its induced topology

M Beiglböck, G Pammer, A Posch - arXiv preprint arXiv:2312.16515, 2023 - arxiv.org
A basic and natural coupling between two probabilities on $\mathbb R^ N $ is given by the
Knothe-Rosenblatt coupling. It represents a multiperiod extension of the quantile coupling …

A probabilistic view on the adapted Wasserstein distance

M Beiglböck, S Pflügl, S Schrott - arXiv preprint arXiv:2406.19810, 2024 - arxiv.org
Causal optimal transport and adapted Wasserstein distance have applications in different
fields from optimization to mathematical finance and machine learning. The goal of this …

General duality and dual attainment for adapted transport

D Kršek, G Pammer - arXiv preprint arXiv:2401.11958, 2024 - arxiv.org
We investigate duality and existence of dual optimizers for several adapted optimal transport
problems under minimal assumptions. This includes the causal and bicausal transport, the …

Pricing interest rate derivatives under volatility uncertainty

J Hölzermann - Annals of Operations Research, 2024 - Springer
In this paper, we study the pricing of contracts in fixed income markets under volatility
uncertainty in the sense of Knightian uncertainty or model uncertainty. The starting point is …

Существование решений нелинейной задачи Канторовича оптимальной транспортировки

ВИ Богачев, АВ Резбаев - Математические заметки, 2022 - mathnet.ru
В работе исследуется существование решений задачи Канторовича оптимальной
транспортировки с нелинейным функционалом стоимости, порожденным функцией …

Denseness of biadapted Monge mappings

M Beiglböck, G Pammer, S Schrott - arXiv preprint arXiv:2210.15554, 2022 - arxiv.org
Adapted or causal transport theory aims to extend classical optimal transport from probability
measures to stochastic processes. On a technical level, the novelty is to restrict to couplings …

Existence of solutions to the nonlinear Kantorovich transportation problem

VI Bogachev, AV Rezbaev - Mathematical Notes, 2022 - Springer
We study the existence of solutions to the Kantorovich optimal transportation problem with a
nonlinear cost functional generated by a cost function depending on the transport plan. We …