[HTML][HTML] Relevance of polynomial matrix decompositions to broadband blind signal separation

S Redif, S Weiss, JG McWhirter - Signal processing, 2017 - Elsevier
The polynomial matrix EVD (PEVD) is an extension of the conventional eigenvalue
decomposition (EVD) to polynomial matrices. The purpose of this article is to provide a …

Eigenvalue decomposition of a parahermitian matrix: Extraction of analytic eigenvectors

S Weiss, IK Proudler, FK Coutts… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
An analytic parahermitian matrix admits in almost all cases an eigenvalue decomposition
(EVD) with analytic eigenvalues and eigenvectors. We have previously defined a discrete …

Eigenvalue decomposition of a parahermitian matrix: Extraction of analytic eigenvalues

S Weiss, IK Proudler, FK Coutts - IEEE Transactions on Signal …, 2021 - ieeexplore.ieee.org
An analytic parahermitian matrix admits an eigenvalue decomposition (EVD) with analytic
eigenvalues and eigenvectors except in the case of multiplexed data. In this paper, we …

On the existence and uniqueness of the eigenvalue decomposition of a parahermitian matrix

S Weiss, J Pestana, IK Proudler - IEEE Transactions on Signal …, 2018 - ieeexplore.ieee.org
This paper addresses the extension of the factorization of a Hermitian matrix by an
eigenvalue decomposition (EVD) to the case of a parahermitian matrix that is analytic at …

Space-time covariance matrix estimation: Loss of algebraic multiplicities of eigenvalues

FA Khattak, S Weiss, IK Proudler… - 2022 56th Asilomar …, 2022 - ieeexplore.ieee.org
Parahermitian matrices in almost all cases admit an eigenvalue decomposition (EVD) with
analytic eigenvalues. This decomposition is key in order to extend the utility of the EVD from …

Row-shift corrected truncation of paraunitary matrices for PEVD algorithms

J Corr, K Thompson, S Weiss… - 2015 23rd European …, 2015 - ieeexplore.ieee.org
In this paper, we show that the paraunitary (PU) matrices that arise from the polynomial
eigenvalue decomposition (PEVD) of a parahermitian matrix are not unique. In particular …

Compact order polynomial singular value decomposition of a matrix of analytic functions

MA Bakhit, FA Khattak, IK Proudler… - 2023 IEEE 9th …, 2023 - ieeexplore.ieee.org
This paper presents a novel method for calculating a compact order singular value
decomposition (SVD) of polynomial matrices, building upon the recently proven existence of …

Iterative approximation of analytic eigenvalues of a parahermitian matrix EVD

S Weiss, IK Proudler, FK Coutts… - ICASSP 2019-2019 …, 2019 - ieeexplore.ieee.org
We present an algorithm that extracts analytic eigenvalues from a parahermitian matrix.
Operating in the discrete Fourier transform domain, an inner iteration re-establishes the lost …

Second order sequential best rotation algorithm with householder reduction for polynomial matrix eigenvalue decomposition

VW Neo, PA Naylor - ICASSP 2019-2019 IEEE International …, 2019 - ieeexplore.ieee.org
The Second-order Sequential Best Rotation (SBR2) algorithm, used for Eigenvalue
Decomposition (EVD) on para-Hermitian polynomial matrices typically encountered in …

Multiple shift second order sequential best rotation algorithm for polynomial matrix EVD

Z Wang, JG McWhirter, J Corr… - 2015 23rd European …, 2015 - ieeexplore.ieee.org
In this paper, we present an improved version of the second order sequential best rotation
algorithm (SBR2) for polynomial matrix eigenvalue decomposition of para-Hermitian …