Pump up the volume: Processing large data on gpus with fast interconnects

C Lutz, S Breß, S Zeuch, T Rabl, V Markl - Proceedings of the 2020 ACM …, 2020 - dl.acm.org
GPUs have long been discussed as accelerators for database query processing because of
their high processing power and memory bandwidth. However, two main challenges limit the …

Engineering a high-performance GPU B-Tree

MA Awad, S Ashkiani, R Johnson… - Proceedings of the 24th …, 2019 - dl.acm.org
We engineer a GPU implementation of a B-Tree that supports concurrent queries (point,
range, and successor) and updates (insertions and deletions). Our B-tree outperforms the …

Speeding up large-scale point-in-polygon test based spatial join on GPUs

J Zhang, S You - Proceedings of the 1st ACM SIGSPATIAL International …, 2012 - dl.acm.org
Point-in-Polygon (PIP) test is fundamental to spatial databases and GIS. Motivated by the
slow response times in joining large-scale point locations with polygons using traditional …

A novel method for parallel indexing of real time geospatial big data generated by IoT devices

SV Limkar, RK Jha - Future generation computer systems, 2019 - Elsevier
IoT produces a huge amount of big data as it comprises billions of devices that are
interconnected with each other through internet. Today's majority of the big data part is about …

GPU LSM: A dynamic dictionary data structure for the GPU

S Ashkiani, S Li, M Farach-Colton… - 2018 IEEE …, 2018 - ieeexplore.ieee.org
We develop a dynamic dictionary data structure for the GPU, supporting fast insertions and
deletions, based on the Log Structured Merge tree (LSM). Our implementation on an NVIDIA …

Accelerating the similarity self-join using the GPU

M Gowanlock, B Karsin - Journal of parallel and distributed computing, 2019 - Elsevier
The self-join finds all objects in a dataset within a threshold of each other defined by a
similarity metric. As such, the self-join is a fundamental building block for the field of …

Parallel range query processing on r-tree with graphics processing unit

B Yu, H Kim, W Choi, D Kwon - 2011 IEEE Ninth International …, 2011 - ieeexplore.ieee.org
Recently, various research efforts have been conducted to develop strategies for
accelerating multi-dimensional query processing using the Graphics Processing Units …

Computing over encrypted spatial data generated by IoT

SV Limkar, RK Jha - Telecommunication Systems, 2019 - Springer
Proliferation of IoT devices produces the enormous amount of data that need to be stored on
clouds. A main focus of this paper is to ensure the secrecy of data, while it is in transit …

利用GPU 的R 树细粒度并行STR 方法批量构建

邵华, 江南, 胡斌, 吕恒, 朱进 - 武汉大学学报(信息科学版), 2014 - ch.whu.edu.cn
目的大数据时代, 需要对海量空间数据更快速地建立高效索引, 使用递归排序网格(STR)
方法构建的R 树具有优秀的查询性能, 但构建效率不高. 本文利用基于计算机图形处理器(GPU) …

图形处理器在数据库技术中的应用

杨珂, 罗琼, 石教英 - 浙江大学学报. 工学版= Journal of Zhejiang …, 2009 - repository.ust.hk
綜述了圖形處理器上的通用計算(GPGPU) 技術以及利用圖形處理器(GPU)
進行數據庫處理的工作. 將GPU 技術的發展劃分為固定功能架構, 分離渲染架構和統一渲染架構 …