Sixth generation (6G) cognitive radio network (CRN) application, requirements, security issues, and key challenges

MM Aslam, L Du, X Zhang, Y Chen… - Wireless …, 2021 - Wiley Online Library
Recently, 5G installation has been started globally. Different capabilities are in the
consistent procedure, like ultrareliability, mass connectivity, and specific low latency …

A low complexity near-optimal iterative linear detector for massive MIMO in realistic radio channels of 5G communication systems

MA Albreem, MH Alsharif, S Kim - Entropy, 2020 - mdpi.com
Massive multiple-input multiple-output (M-MIMO) is a substantial pillar in fifth generation
(5G) mobile communication systems. Although the maximum likelihood (ML) detector attains …

Computationally efficient data detection in massive MIMO wireless systems via semi-iterative method

IA Khoso, X Zhang, IA Khoso… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Practical data detectors must achieve low error-rate at low-complexity for massive multiple-
input multiple-output (MIMO) wireless systems. Since near-optimal minimum mean square …

A Low Complexity Linear Precoding Method for Extremely Large-Scale MIMO Systems

S Berra, A Benchabane, S Chakraborty… - IEEE Open Journal …, 2024 - ieeexplore.ieee.org
Massive multiple-input multiple-output (MIMO) systems are critical technologies for the next
generation of networks. In this field of research, new forms of deployment are emerging …

Efficient hybrid linear massive MIMO detector using Gauss–Seidel and successive over-relaxation

MAM Albreem, K Vasudevan - International Journal of Wireless Information …, 2020 - Springer
The initial solution of a massive multiple-input multiple-output (M-MIMO) detector for uplink
(UL) is greatly influence the balance between the bit error rate (BER) performance and the …

Joint steepest descent and non‐stationary Richardson method for low‐complexity detection in massive MIMO systems

IA Khoso, X Zhang, X Dai, A Ahmed… - Transactions on …, 2022 - Wiley Online Library
Signal detection is a major challenge in massive multiple‐input multiple‐output (MIMO)
wireless systems due to array of hundreds of antennas. Linear minimum mean square error …

Low-complexity and fast-convergence linear precoding based on modified SOR for massive MIMO systems

Y Liu, Y Li, X Cheng, Y Lian, Y Jia, H Zhang - Digital Signal Processing, 2020 - Elsevier
Linear zero forcing (ZF) precoding can obtain near-optimal performance as the number of
base station (BS) antennas increases, but involve complex matrix inversion calculations …

Low-Complexity Signal Detection for Massive MIMO Systems via Trace Iterative Method

AK Imran, X Zhang, HS Abdul, AK Ihsan… - Journal of Systems …, 2024 - ieeexplore.ieee.org
Linear minimum mean square error (MMSE) detection has been shown to achieve near-
optimal performance for massive multiple-input multiple-output (MIMO) systems but …

[HTML][HTML] 基於改良精化雅可比法與雙脈動陣列架構之軟性輸出的巨量多輸入多輸出偵測器設計

CK Huang - 2021 - ir.lib.ncu.edu.tw
摘要(中) 隨著行動流量呈等比級數增長, 巨量多輸入多輸出(Massive Multi-Input-Multi-Output)
系統被視為下一代無線通訊系統中一項關鍵的技術, 相較於傳統MIMO 系統在頻譜效率, 可靠性 …

大规模MIMO 通信中基于Jacobi 预迭代的改进Gauss⁃ Seide 算法.

史传胜, 冯姣, 司闯, 张锐 - … & Processing/Shu Ju Cai Ji Yu …, 2021 - search.ebscohost.com
在大规模MIMO 系统中, 现有的高斯‑赛德尔(Gauss‑Seide, GS) 算法相较于最小均方误差(
Minimum mean‑square error, MMSE) 算法, GS 的复杂度较低, 但其检测性能相比而言较差 …