Machine learning for medical imaging: methodological failures and recommendations for the future

G Varoquaux, V Cheplygina - NPJ digital medicine, 2022 - nature.com
Research in computer analysis of medical images bears many promises to improve patients'
health. However, a number of systematic challenges are slowing down the progress of the …

Transformers in medical imaging: A survey

F Shamshad, S Khan, SW Zamir, MH Khan… - Medical Image …, 2023 - Elsevier
Following unprecedented success on the natural language tasks, Transformers have been
successfully applied to several computer vision problems, achieving state-of-the-art results …

Segment anything in medical images

J Ma, Y He, F Li, L Han, C You, B Wang - Nature Communications, 2024 - nature.com
Medical image segmentation is a critical component in clinical practice, facilitating accurate
diagnosis, treatment planning, and disease monitoring. However, existing methods, often …

Segment anything model for medical image analysis: an experimental study

MA Mazurowski, H Dong, H Gu, J Yang, N Konz… - Medical Image …, 2023 - Elsevier
Training segmentation models for medical images continues to be challenging due to the
limited availability of data annotations. Segment Anything Model (SAM) is a foundation …

Segment anything model for medical images?

Y Huang, X Yang, L Liu, H Zhou, A Chang, X Zhou… - Medical Image …, 2024 - Elsevier
Abstract The Segment Anything Model (SAM) is the first foundation model for general image
segmentation. It has achieved impressive results on various natural image segmentation …

[HTML][HTML] TotalSegmentator: robust segmentation of 104 anatomic structures in CT images

J Wasserthal, HC Breit, MT Meyer… - Radiology: Artificial …, 2023 - ncbi.nlm.nih.gov
Purpose To present a deep learning segmentation model that can automatically and
robustly segment all major anatomic structures on body CT images. Materials and Methods …

Self-supervised pre-training of swin transformers for 3d medical image analysis

Y Tang, D Yang, W Li, HR Roth… - Proceedings of the …, 2022 - openaccess.thecvf.com
Abstract Vision Transformers (ViT) s have shown great performance in self-supervised
learning of global and local representations that can be transferred to downstream …

Medical image segmentation review: The success of u-net

R Azad, EK Aghdam, A Rauland, Y Jia… - … on Pattern Analysis …, 2024 - ieeexplore.ieee.org
Automatic medical image segmentation is a crucial topic in the medical domain and
successively a critical counterpart in the computer-aided diagnosis paradigm. U-Net is the …

Medmnist v2-a large-scale lightweight benchmark for 2d and 3d biomedical image classification

J Yang, R Shi, D Wei, Z Liu, L Zhao, B Ke, H Pfister… - Scientific Data, 2023 - nature.com
We introduce MedMNIST v2, a large-scale MNIST-like dataset collection of standardized
biomedical images, including 12 datasets for 2D and 6 datasets for 3D. All images are pre …

Swin unetr: Swin transformers for semantic segmentation of brain tumors in mri images

A Hatamizadeh, V Nath, Y Tang, D Yang… - International MICCAI …, 2021 - Springer
Semantic segmentation of brain tumors is a fundamental medical image analysis task
involving multiple MRI imaging modalities that can assist clinicians in diagnosing the patient …