Safe learning in robotics: From learning-based control to safe reinforcement learning

L Brunke, M Greeff, AW Hall, Z Yuan… - Annual Review of …, 2022 - annualreviews.org
The last half decade has seen a steep rise in the number of contributions on safe learning
methods for real-world robotic deployments from both the control and reinforcement learning …

Robust reinforcement learning: A review of foundations and recent advances

J Moos, K Hansel, H Abdulsamad, S Stark… - Machine Learning and …, 2022 - mdpi.com
Reinforcement learning (RL) has become a highly successful framework for learning in
Markov decision processes (MDP). Due to the adoption of RL in realistic and complex …

Rambo-rl: Robust adversarial model-based offline reinforcement learning

M Rigter, B Lacerda, N Hawes - Advances in neural …, 2022 - proceedings.neurips.cc
Offline reinforcement learning (RL) aims to find performant policies from logged data without
further environment interaction. Model-based algorithms, which learn a model of the …

Crossing the reality gap: A survey on sim-to-real transferability of robot controllers in reinforcement learning

E Salvato, G Fenu, E Medvet, FA Pellegrino - IEEE Access, 2021 - ieeexplore.ieee.org
The growing demand for robots able to act autonomously in complex scenarios has widely
accelerated the introduction of Reinforcement Learning (RL) in robots control applications …

How simulation helps autonomous driving: A survey of sim2real, digital twins, and parallel intelligence

X Hu, S Li, T Huang, B Tang, R Huai… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
Developing autonomous driving technologies necessitates addressing safety and cost
concerns. Both academic research and commercial applications of autonomous driving …

One solution is not all you need: Few-shot extrapolation via structured maxent rl

S Kumar, A Kumar, S Levine… - Advances in Neural …, 2020 - proceedings.neurips.cc
While reinforcement learning algorithms can learn effective policies for complex tasks, these
policies are often brittle to even minor task variations, especially when variations are not …

Challenges and countermeasures for adversarial attacks on deep reinforcement learning

I Ilahi, M Usama, J Qadir, MU Janjua… - IEEE Transactions …, 2021 - ieeexplore.ieee.org
Deep reinforcement learning (DRL) has numerous applications in the real world, thanks to
its ability to achieve high performance in a range of environments with little manual …

A survey on deep learning and deep reinforcement learning in robotics with a tutorial on deep reinforcement learning

EF Morales, R Murrieta-Cid, I Becerra… - Intelligent Service …, 2021 - Springer
This article is about deep learning (DL) and deep reinforcement learning (DRL) works
applied to robotics. Both tools have been shown to be successful in delivering data-driven …

Robust multi-agent reinforcement learning via adversarial regularization: Theoretical foundation and stable algorithms

A Bukharin, Y Li, Y Yu, Q Zhang… - Advances in …, 2024 - proceedings.neurips.cc
Abstract Multi-Agent Reinforcement Learning (MARL) has shown promising results across
several domains. Despite this promise, MARL policies often lack robustness and are …

Risk-averse offline reinforcement learning

NA Urpí, S Curi, A Krause - arXiv preprint arXiv:2102.05371, 2021 - arxiv.org
Training Reinforcement Learning (RL) agents in high-stakes applications might be too
prohibitive due to the risk associated to exploration. Thus, the agent can only use data …