We give an account of some results, both old and new, about any n*n Markov matrix that is embeddable in a one-parameter Markov semigroup. These include the fact that its …
AG Kachurovskii, IV Podvigin, AZ Khakimbaev - Mathematical Notes, 2023 - Springer
We consider the power-law uniform (in the operator norm) convergence on vector subspaces with their own norms in the von Neumann ergodic theorem with discrete time. All …
T Eisner, A Radl - Linear and Multilinear Algebra, 2022 - Taylor & Francis
Embedding discrete Markov chains into continuous ones is a famous open problem in probability theory with many applications. Inspired by recent progress, we study the closely …
T Eisner, T Mátrai - Israel Journal of Mathematics, 2013 - Springer
We study the typical behavior of bounded linear operators on infinite-dimensional complex separable Hilbert spaces in the norm, strong-star, strong, weak polynomial and weak …
T Eisner - L'Enseignement Mathématique, 2010 - ems.press
We show that the set of unitary operators on a separable infinite-dimensional Hilbert space is residual (for the weak operator topology) in the set of all contractions. The same holds for …
R Dahya - Banach Journal of Mathematical Analysis, 2024 - Springer
We generalise a technique of Bhat and Skeide (J Funct Anal 269: 1539–1562, 2015) to interpolate commuting families {S i} i∈ I of contractions on a Hilbert space H, to commuting …
У монографії розглянуто задачі моделювання систем та процесів з розподіленими параметрами, характеристики яких представлено у вигляді числових інтервалів …
In this paper we study the embedding problem of an operator into a strongly continuous semigroup. We obtain characterizations for some classes of operators, namely composition …