Boundary conditions and universal finite-size scaling for the hierarchical model in dimensions 4 and higher

E Michta, J Park, G Slade - arXiv preprint arXiv:2306.00896, 2023 - arxiv.org
We analyse and clarify the finite-size scaling of the weakly-coupled hierarchical $ n $-
component $|\varphi|^ 4$ model for all integers $ n\ge 1$ in all dimensions $ d\ge 4$, for …

Universal finite-size scaling in high-dimensional critical phenomena

Y Liu, J Park, G Slade - arXiv preprint arXiv:2412.08814, 2024 - arxiv.org
We present a new unified theory of critical finite-size scaling for lattice statistical mechanical
models with periodic boundary conditions above the upper critical dimension. The universal …

The torus plateau for the high-dimensional Ising model

Y Liu, R Panis, G Slade - arXiv preprint arXiv:2405.17353, 2024 - arxiv.org
We consider the Ising model on a $ d $-dimensional discrete torus of volume $ r^ d $, in
dimensions $ d> 4$ and for large $ r $, in the vicinity of the infinite-volume critical point …

Two-point functions of random-length random walk on high-dimensional boxes

Y Deng, TM Garoni, J Grimm… - Journal of Statistical …, 2024 - iopscience.iop.org
Two-point functions of random-length random walk on high-dimensional boxes - IOPscience
This site uses cookies. By continuing to use this site you agree to our use of cookies. To find …

Quantum extraordinary-log universality of boundary critical behavior

Y Sun, JP Lv - Physical Review B, 2022 - APS
The recent discovery of extraordinary-log universality has generated intense interest in
classical and quantum boundary critical phenomena. Despite tremendous efforts, the …

Weakly self-avoiding walk on a high-dimensional torus

E Michta, G Slade - Probability and Mathematical Physics, 2023 - msp.org
How long does a self-avoiding walk on a discrete d-dimensional torus have to be before it
begins to behave differently from a self-avoiding walk on ℤ d? We consider a version of this …

Boundary conditions and the two-point function plateau for the hierarchical model in dimensions 4 and higher

J Park, G Slade - arXiv preprint arXiv:2405.17344, 2024 - arxiv.org
We obtain precise plateau estimates for the two-point function of the finite-volume weakly-
coupled hierarchical $|\varphi|^ 4$ model in dimensions $ d\ge 4$, for both free and periodic …

Near-critical and finite-size scaling for high-dimensional lattice trees and animals

Y Liu, G Slade - arXiv preprint arXiv:2412.05491, 2024 - arxiv.org
We consider spread-out models of lattice trees and lattice animals on $\mathbb Z^ d $, for $
d $ above the upper critical dimension $ d_ {\mathrm c}= 8$. We define a correlation length …

Asymptotic behaviour of the lattice Green function

E Michta, G Slade - arXiv preprint arXiv:2101.04717, 2021 - arxiv.org
The lattice Green function, ie, the resolvent of the discrete Laplace operator, is fundamental
in probability theory and mathematical physics. We derive its long-distance behaviour via a …

The scaling limit of the weakly self-avoiding walk on a high-dimensional torus

E Michta - Electronic Communications in Probability, 2023 - projecteuclid.org
We prove that the scaling limit of the weakly self-avoiding walk on ad-dimensional discrete
torus is Brownian motion on the continuum torus if the length of the rescaled walk is o (V 1∕ …