Fractional eigenvalues

E Lindgren, P Lindqvist - Calculus of Variations and Partial Differential …, 2014 - Springer
We study the non-local eigenvalue problem 2\, ∫\limits _ R^ n| u (y)-u (x)|^ p-2\bigl (u (y)-u
(x)\bigr)| yx|^ α p\, dy+ λ| u (x)|^ p-2 u (x)= 0 for large values of p and derive the limit equation …

A system of local/nonlocal p-Laplacians: the eigenvalue problem and its asymptotic limit as p→∞

S Buccheri, JV da Silva, LH de Miranda - Asymptotic Analysis, 2022 - content.iospress.com
A system of local/nonlocal p-Laplacians: The eigenvalue problem and its asymptotic limit as
p→∞ - IOS Press You are viewing a javascript disabled version of the site. Please enable …

Eigenvalue problems in 𝐿^{∞}: optimality conditions, duality, and relations with optimal transport

L Bungert, Y Korolev - Communications of the American Mathematical …, 2022 - ams.org
In this article we characterize the $\mathrm {L}^\infty $ eigenvalue problem associated to the
Rayleigh quotient $\left.{\|\nabla u\| _ {\mathrm {L}^\infty}}\middle/{\| u\| _\infty}\right. $ and …

On the geometry of the -Laplacian operator

B Kawohl, J Horak - arXiv preprint arXiv:1604.07675, 2016 - arxiv.org
The $ p $-Laplacian operator $\Delta_pu={\rm div}\left (|\nabla u|^{p-2}\nabla u\right) $ is not
uniformly elliptic for any $ p\in (1, 2)\cup (2,\infty) $ and degenerates even more when …

An eigenvalue problem with variable exponents

G Franzina, P Lindqvist - Nonlinear Analysis: Theory, Methods & …, 2013 - Elsevier
A highly nonlinear eigenvalue problem is studied in a Sobolev space with variable
exponent. The Euler–Lagrange equation for the minimization of a Rayleigh quotient of two …

Structural analysis of an L-infinity variational problem and relations to distance functions

L Bungert, Y Korolev, M Burger - Pure and Applied Analysis, 2020 - msp.org
We analyse the functional 𝒥 (u)=∥∇ u∥∞ defined on Lipschitz functions with
homogeneous Dirichlet boundary conditions. Our analysis is performed directly on the …

[HTML][HTML] Generalised vectorial∞-eigenvalue nonlinear problems for L∞ functionals

N Katzourakis - Nonlinear Analysis, 2022 - Elsevier
Abstract Let Ω⋐ R n, f∈ C 1 (RN× n) and g∈ C 1 (RN), where N, n∈ N. We study the
minimisation problem of finding u∈ W 0 1,∞(Ω; RN) that satisfies‖ f (D u)‖ L∞(Ω)= inf {‖ f …

Principal eigenvalue problem for infinity Laplacian in metric spaces

Q Liu, A Mitsuishi - Advanced Nonlinear Studies, 2022 - degruyter.com
This article is concerned with the Dirichlet eigenvalue problem associated with the∞-
Laplacian in metric spaces. We establish a direct partial differential equation approach to …

Comparison Principles for the Finsler Infinity Laplacian with Applications to Minimal Lipschitz Extensions

PS Morfe - arXiv preprint arXiv:2405.05684, 2024 - arxiv.org
This paper proves comparison principles for elliptic PDE involving the Finsler infinity
Laplacian, a second-order differential operator with discontinuities in the gradient variable …

The infinity Laplacian eigenvalue problem: reformulation and a numerical scheme

F Bozorgnia, L Bungert, D Tenbrinck - Journal of Scientific Computing, 2024 - Springer
In this work, we present an alternative formulation of the higher eigenvalue problem
associated to the infinity Laplacian, which opens the door for numerical approximation of …