Cohomology of a quasihomogeneous complete intersection

AG Aleksandrov - Mathematics of the USSR-Izvestiya, 1986 - iopscience.iop.org
In this paper are computed the Poincare series of the highest local cohomology of the
modules of regular forms on a nondegenerate quasihomogeneous singularity and the …

Moduli in versal deformations of complex spaces

VP Palamodov - Variétés Analytiques Compactes: Colloque, Nice, 19 …, 2006 - Springer
Following the famous Riemann's work [1J by moduli one means complex coordinates on a
moduli space especially on a moduli space of compact complex spaces. One can define this …

Normal forms of one-dimensional quasihomogeneous complete intersections

AG Aleksandrov - Mathematics of the USSR-Sbornik, 1983 - iopscience.iop.org
In this paper the author presents an approach to the problem of classifying
quasihomogeneous singularities, based on the use of simple properties of deformation …

Free deformations of hypersurface singularities

AG Aleksandrov, J Sekiguchi - Journal of Mathematical Sciences, 2011 - Springer
The article is devoted to the study of the classification problem for Saito free divisors making
use of the deformation theory of varieties. In particular, in the quasihomogeneous case, we …

Когомология квазиоднородного полного пересечения

АГ Александров - Известия Российской академии наук. Серия …, 1985 - mathnet.ru
В этой работе мы разберем несколько приложений формул для вычи сления
различных целочисленных инвариантов квазиоднородной особен ности, полученных …

Modular space for complete intersection curve-singularities

AG Aleksandrov - Finite or Infinite Dimensional Complex Analysis, 2019 - taylorfrancis.com
Modular families and modular spaces for quasi-homogeneous isolated complete
intersection curve-singularities with modularity one are computed. In particular, it is proved …

Нормальные формы одномерных квазиоднородных полных пересечений

АГ Александров - Математический сборник, 1982 - mathnet.ru
В работе [2] составлены списки нормальных форм квазиоднородных функций с
внутренней модальностью 0 и 1, а в [33]—с внутренней мо дальностью 2, 3, 4. По …

Simple surface singularities

J Stevens - arXiv preprint arXiv:1303.0692, 2013 - arxiv.org
By the famous ADE classification rational double points are simple. Rational triple points are
also simple. We conjecture that the simple normal surface singularities are exactly those …

[PDF][PDF] Zero-dimensional gradient singularities

AG Aleksandrov, HQ Zuo - … and Applications of …, 2017 - archive.ymsc.tsinghua.edu.cn
ZERO-DIMENSIONAL GRADIENT SINGULARITIES Introduction. Lists of normal forms of
quasihomogeneous functions with in- ner modality Page 1 METHODS AND APPLICATIONS OF …

Tree Singularities: Limits, Series and Stability

D Van Straten - Deformations of Surface Singularities, 2013 - Springer
A tree singularity is a surface singularity that consists of smooth components, glued along
smooth curves in the pattern of a tree. Such singularities naturally occur as degenerations of …