Artificial intelligence in the creative industries: a review

N Anantrasirichai, D Bull - Artificial intelligence review, 2022 - Springer
This paper reviews the current state of the art in artificial intelligence (AI) technologies and
applications in the context of the creative industries. A brief background of AI, and …

Generative adversarial networks for face generation: A survey

A Kammoun, R Slama, H Tabia, T Ouni… - ACM Computing …, 2022 - dl.acm.org
Recently, generative adversarial networks (GANs) have progressed enormously, which
makes them able to learn complex data distributions in particular faces. More and more …

Sliced wasserstein discrepancy for unsupervised domain adaptation

CY Lee, T Batra, MH Baig… - Proceedings of the IEEE …, 2019 - openaccess.thecvf.com
In this work, we connect two distinct concepts for unsupervised domain adaptation: feature
distribution alignment between domains by utilizing the task-specific decision boundary and …

Computational optimal transport: With applications to data science

G Peyré, M Cuturi - Foundations and Trends® in Machine …, 2019 - nowpublishers.com
Optimal transport (OT) theory can be informally described using the words of the French
mathematician Gaspard Monge (1746–1818): A worker with a shovel in hand has to move a …

Optimal transport for single-cell and spatial omics

C Bunne, G Schiebinger, A Krause, A Regev… - Nature Reviews …, 2024 - nature.com
High-throughput single-cell profiling provides an unprecedented ability to uncover the
molecular states of millions of cells. These technologies are, however, destructive to cells …

Interpolating between optimal transport and mmd using sinkhorn divergences

J Feydy, T Séjourné, FX Vialard… - The 22nd …, 2019 - proceedings.mlr.press
Comparing probability distributions is a fundamental problem in data sciences. Simple
norms and divergences such as the total variation and the relative entropy only compare …

Pot: Python optimal transport

R Flamary, N Courty, A Gramfort, MZ Alaya… - Journal of Machine …, 2021 - jmlr.org
Optimal transport has recently been reintroduced to the machine learning community thanks
in part to novel efficient optimization procedures allowing for medium to large scale …

Deep-learning tomography

M Araya-Polo, J Jennings, A Adler, T Dahlke - The Leading Edge, 2018 - library.seg.org
Velocity-model building is a key step in hydrocarbon exploration. The main product of
velocity-model building is an initial model of the subsurface that is subsequently used in …

Soft-dtw: a differentiable loss function for time-series

M Cuturi, M Blondel - International conference on machine …, 2017 - proceedings.mlr.press
We propose in this paper a differentiable learning loss between time series, building upon
the celebrated dynamic time warping (DTW) discrepancy. Unlike the Euclidean distance …

Learning generative models with sinkhorn divergences

A Genevay, G Peyré, M Cuturi - International Conference on …, 2018 - proceedings.mlr.press
The ability to compare two degenerate probability distributions, that is two distributions
supported on low-dimensional manifolds in much higher-dimensional spaces, is a crucial …