The Monge-Kantorovich problem: achievements, connections, and perspectives

VI Bogachev, AV Kolesnikov - Russian Mathematical Surveys, 2012 - iopscience.iop.org
This article gives a survey of recent research related to the Monge-Kantorovich problem.
Principle results are presented on the existence of solutions and their properties both in the …

[图书][B] Measure theory

VI Bogachev, MAS Ruas - 2007 - Springer
Includes material for a standard graduate class, advanced material not covered by the
standard course but necessary in order to read research literature in the area, and extensive …

Задача Монжа–Канторовича: достижения, связи и перспективы

ВИ Богачев, АВ Колесников - Успехи математических наук, 2012 - mathnet.ru
В статье дается обзор недавних исследований, связанных с задачей Монжа-
Канторовича. Приведены основные результаты о существовании решений и их …

Mass transport and variants of the logarithmic Sobolev inequality

F Barthe, AV Kolesnikov - Journal of Geometric Analysis, 2008 - Springer
We develop the optimal transportation approach to modified log-Sobolev inequalities and to
isoperimetric inequalities. Various sufficient conditions for such inequalities are given. Some …

Gaussian measures on infinite-dimensional spaces

VI Bogachev - Real and Stochastic Analysis: Current Trends, 2014 - books.google.com
Gaussian distributions, along with certain discrete distributions, are the most important
statistical distributions in science and technology. They have been known and used for two …

Moment measures and stability for Gaussian inequalities

AV Kolesnikov, ED Kosov - arXiv preprint arXiv:1801.00140, 2017 - arxiv.org
Let $\gamma $ be the standard Gaussian measure on $\mathbb {R}^ n $ and let $\mathcal
{P} _ {\gamma} $ be the space of probability measures that are absolutely continuous with …

Hessian metrics, CD (K, N)-spaces, and optimal transportation of log-concave measures

AV Kolesnikov - arXiv preprint arXiv:1201.2342, 2012 - arxiv.org
We study the optimal transportation mapping $\nabla\Phi:\mathbb {R}^ d\mapsto\mathbb
{R}^ d $ pushing forward a probability measure $\mu= e^{-V}\dx $ onto another probability …

Sobolev regularity for the Monge–Ampere equation in the Wiener space

VI Bogachev, AV Kolesnikov - 2013 - projecteuclid.org
Given the standard Gaussian measure γ on the countable product of lines R∞ and a
probability measure g⋅ γ absolutely continuous with respect to γ, we consider the optimal …

[HTML][HTML] On continuity equations in infinite dimensions with non-Gaussian reference measure

AV Kolesnikov, M Röckner - Journal of Functional Analysis, 2014 - Elsevier
Let γ be a Gaussian measure on a locally convex space and H be the corresponding
Cameron–Martin space. It has been recently shown by L. Ambrosio and A. Figalli that the …

Optimal transportation of processes with infinite Kantorovich distance: Independence and symmetry

AV Kolesnikov, DA Zaev - 2017 - projecteuclid.org
We consider probability measures on R∞ and study optimal transportation mappings for the
case of infinite Kantorovich distance. Our examples include (1) quasiproduct measures and …