[HTML][HTML] Recurrent neural networks: A comprehensive review of architectures, variants, and applications

ID Mienye, TG Swart, G Obaido - Information, 2024 - mdpi.com
Recurrent neural networks (RNNs) have significantly advanced the field of machine learning
(ML) by enabling the effective processing of sequential data. This paper provides a …

Anomaly Detection in Coastal Wireless Sensors via Efficient Deep Sequential Learning

M Matar, T Xia, K Huguenard, D Huston… - IEEE Access, 2023 - ieeexplore.ieee.org
Wireless Sensor Networks (WSNs) encounter a substantial challenge when it comes to
energy conservation. As sensor nodes rely on battery power to operate in unattended …

[HTML][HTML] Parameters Identification for Lithium-Ion Battery Models Using the Levenberg–Marquardt Algorithm

A Alshawabkeh, M Matar, F Almutairy - World Electric Vehicle Journal, 2024 - mdpi.com
The increasing adoption of batteries in a variety of applications has highlighted the necessity
of accurate parameter identification and effective modeling, especially for lithium-ion …

An Enhancing Timeseries Anomaly Detection Using LSTM and Bi-LSTM Architectures

Y Fadili, Y El Yamani, J Kilani… - … Networks and Mobile …, 2024 - ieeexplore.ieee.org
Anomaly detection in time series data plays a critical role in various domains, including
cybersecurity, industrial monitoring, and financial fraud detection. In recent years, deep …

面向WSN 异常节点检测的融合重构机制与对比学习方法

叶苗, 程锦, 黄源, 蒋秋香, 王勇 - 通信学报, 2024 - infocomm-journal.com
针对无线传感器网络(WSN) 异常检测中的自监督学习异常检测方法需要解决负例样本信息表示
单一缺乏多样性和提取WSN 节点采集到的多模态数据时空特征不够充分影响异常检测性能的 …

Fusion reconstruction mechanism and contrast learning method for WSN abnormal node detection.

YE Miao, C Jin, H Yuan, J Qiuxiang… - Journal on …, 2024 - search.ebscohost.com
To tackle the defects of self-supervised learning anomaly detection methods for wireless
sensor network (WSN) need to address the problems of single negative sample types and …

Robust Methodology Design to Detect Anomalies Over Wireless Sensor Networks Using Predictive Learning Strategy

R Rajeshwari, A Athithya… - 2024 Ninth …, 2024 - ieeexplore.ieee.org
In the realm of intrusion detection, the effective utilization of machine learning algorithms is
paramount to safeguarding network security. Using the NSL-KDD dataset, this study …

UoCAD: An Unsupervised Online Contextual Anomaly Detection Approach for Multivariate Time Series from Smart Homes

AA Toor, JC Lin, EG Gran, MC Lee - IoTBDS 2024: Proceedings …, 2024 - ntnuopen.ntnu.no
In the context of time series data, a contextual anomaly is considered an event or action that
causes a deviation in the data values from the norm. This deviation may appear normal if we …

[PDF][PDF] Anomaly Detection in Mobile Broadband Network Using Federated Learning

OS Okubadejo - 2024 - nmbu.brage.unit.no
The advancement of mobile broadband networks has introduced new challenges in data
privacy and the efficiency of anomaly detection. Traditional centralized data processing …

МЕТОДИКА СБОРА, ПРЕДОБРАБОТКИ И АНАЛИЗА ДАННЫХ В БЕСПРОВОДНЫХ СЕНСОРНЫХ СЕТЯХ

Е Марденов - Известия НАН РК. Серия физико …, 2024 - journals.nauka-nanrk.kz
Аннотация В статье предлагается комбинированная методика сбора, предобработки и
анализа данных в беспроводных сенсорных сетях (БСС) для решения задач …