Computational methods for linear matrix equations

V Simoncini - siam REVIEW, 2016 - SIAM
Given the square matrices A,B,D,E and the matrix C of conforming dimensions, we consider
the linear matrix equation A\mathbfXE+D\mathbfXB=C in the unknown matrix \mathbfX. Our …

[图书][B] Handbook of linear algebra

L Hogben - 2006 - books.google.com
The Handbook of Linear Algebra provides comprehensive coverage of linear algebra
concepts, applications, and computational software packages in an easy-to-use handbook …

Polynomial eigenvalue problems: Theory, computation, and structure

DS Mackey, N Mackey, F Tisseur - … Control Theory: Festschrift in Honor of …, 2015 - Springer
Matrix polynomial eigenproblems arise in many application areas, both directly and as
approximations for more general nonlinear eigenproblems. One of the most common …

A linear eigenvalue algorithm for the nonlinear eigenvalue problem

E Jarlebring, W Michiels, K Meerbergen - Numerische Mathematik, 2012 - Springer
The Arnoldi method for standard eigenvalue problems possesses several attractive
properties making it robust, reliable and efficient for many problems. The first result of this …

[图书][B] Structure-preserving doubling algorithms for nonlinear matrix equations

TM Huang, RC Li, WW Lin - 2018 - SIAM
Many numerical approximations rely on a simple iteration, X j+ 1= f (X j), to generate a
sequence {Xj} of approximations to a certain target. A doubling algorithm is an idea to …

Numerical methods for palindromic eigenvalue problems: Computing the anti‐triangular Schur form

DS Mackey, N Mackey, C Mehl… - … Linear Algebra with …, 2009 - Wiley Online Library
We present structure‐preserving numerical methods for the eigenvalue problem of complex
palindromic pencils. Such problems arise in control theory, as well as from palindromic …

[PDF][PDF] Consistency and efficient solution of the Sylvester equation for*-congruence

F De Terán, F Dopico - The Electronic Journal of Linear Algebra, 2011 - journals.uwyo.edu
In this paper, the matrix equation AX+ X* B= C is considered, where the matrices A and B
have sizes m× n and n× m, respectively, the size of the unknown X is n× m, and the operator …

Palindromic eigenvalue problems: a brief survey

EK Chu, TM Huang, WW Lin, CT Wu - Taiwanese Journal of …, 2010 - projecteuclid.org
The T-palindromic quadratic eigenvalue problem $(\lambda^ 2 B+\lambda C+ A) x= 0$, with
$ A, B, C\in\mathbb {C}^{n\times n} $, $ C^ T= C $ and $ B^ T= A $, governs the vibration …

[PDF][PDF] Palindromic and even eigenvalue problems-analysis and numerical methods

C Schröder - 2008 - depositonce.tu-berlin.de
This work covers the analysis and numerical solution of certain structured eigenvalue
problems. For square complex matrices A, M, N a generalized eigenvalue problem of the …

[HTML][HTML] Palindromic companion forms for matrix polynomials of odd degree

F De Terán, FM Dopico, DS Mackey - Journal of Computational and …, 2011 - Elsevier
The standard way to solve polynomial eigenvalue problems P (λ) x= 0 is to convert the
matrix polynomial P (λ) into a matrix pencil that preserves its spectral information—a process …