Graph convolutional networks: a comprehensive review

S Zhang, H Tong, J Xu, R Maciejewski - Computational Social Networks, 2019 - Springer
Graphs naturally appear in numerous application domains, ranging from social analysis,
bioinformatics to computer vision. The unique capability of graphs enables capturing the …

[HTML][HTML] Graph neural networks: A review of methods and applications

J Zhou, G Cui, S Hu, Z Zhang, C Yang, Z Liu, L Wang… - AI open, 2020 - Elsevier
Lots of learning tasks require dealing with graph data which contains rich relation
information among elements. Modeling physics systems, learning molecular fingerprints …

Graph neural networks: foundation, frontiers and applications

L Wu, P Cui, J Pei, L Zhao, X Guo - … of the 28th ACM SIGKDD Conference …, 2022 - dl.acm.org
The field of graph neural networks (GNNs) has seen rapid and incredible strides over the
recent years. Graph neural networks, also known as deep learning on graphs, graph …

Knowledge-guided semantic transfer network for few-shot image recognition

Z Li, H Tang, Z Peng, GJ Qi… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
Deep learning-based models have been shown to outperform human beings in many
computer vision tasks with massive available labeled training data in learning. However …

TN-ZSTAD: Transferable network for zero-shot temporal activity detection

L Zhang, X Chang, J Liu, M Luo, Z Li… - … on Pattern Analysis …, 2022 - ieeexplore.ieee.org
An integral part of video analysis and surveillance is temporal activity detection, which
means to simultaneously recognize and localize activities in long untrimmed videos …

Bipartite graph network with adaptive message passing for unbiased scene graph generation

R Li, S Zhang, B Wan, X He - Proceedings of the IEEE/CVF …, 2021 - openaccess.thecvf.com
Scene graph generation is an important visual understanding task with a broad range of
vision applications. Despite recent tremendous progress, it remains challenging due to the …

Introducing language guidance in prompt-based continual learning

MGZA Khan, MF Naeem, L Van Gool… - Proceedings of the …, 2023 - openaccess.thecvf.com
Continual Learning aims to learn a single model on a sequence of tasks without having
access to data from previous tasks. The biggest challenge in the domain still remains …

Towards discriminability and diversity: Batch nuclear-norm maximization under label insufficient situations

S Cui, S Wang, J Zhuo, L Li… - Proceedings of the …, 2020 - openaccess.thecvf.com
The learning of the deep networks largely relies on the data with human-annotated labels. In
some label insufficient situations, the performance degrades on the decision boundary with …

Graph-based deep learning for medical diagnosis and analysis: past, present and future

D Ahmedt-Aristizabal, MA Armin, S Denman, C Fookes… - Sensors, 2021 - mdpi.com
With the advances of data-driven machine learning research, a wide variety of prediction
problems have been tackled. It has become critical to explore how machine learning and …

I2mvformer: Large language model generated multi-view document supervision for zero-shot image classification

MF Naeem, MGZA Khan, Y Xian… - Proceedings of the …, 2023 - openaccess.thecvf.com
Recent works have shown that unstructured text (documents) from online sources can serve
as useful auxiliary information for zero-shot image classification. However, these methods …