B Xie, J Qi - Journal of Differential Equations, 2013 - Elsevier
Non-real eigenvalues of indefinite Sturm–Liouville problems - ScienceDirect Skip to main contentSkip to article Elsevier logo Journals & Books Search RegisterSign in View PDF …
J Qi, B Xie, S Chen - Proceedings of the American Mathematical Society, 2016 - ams.org
The present paper gives a priori upper and lower bounds on non-real eigenvalues of regular indefinite Sturm-Liouville problems only under the integrability conditions. More generally, a …
The non-real spectrum of a singular indefinite Sturm–Liouville operator A= 1 r (− ddxpdd x+ q) with a sign changing weight function r consists (under suitable additional assumptions on …
Bounds on real and imaginary parts of non-real eigenvalues of a non-definite Sturm–Liouville problem - ScienceDirect Skip to main contentSkip to article Elsevier logo Journals & Books …
F Gesztesy, R Weikard - Operator Theory in Harmonic and Non …, 2014 - Springer
We study particular cases of left-definite eigenvalue problems A ψ= B ψ A ψ\;=\; B ψ, with A≥ 𝜀 IA\; ≧\; ε I for some 𝜀> 0 and B self− adjoint ε\;>\; 0\; and\; B\; self-adjoint, but B not …
Abstract We study singular Sturm–Liouville operators of the form 1 rj (− ddxpjdd x+ qj), j= 0, 1, in L 2 ((a, b); rj) with endpoints a and b in the limit point case, where, in contrast to the …
The spectrum of the singular indefinite Sturm-Liouville operator\begin {equation*} A=\operatorname {sgn}(\cdot)\bigl (-\tfrac {d^ 2}{dx^ 2}+ q\bigr)\end {equation*} with a real …
J Behrndt, F Philipp - Journal of Differential Equations, 2010 - Elsevier
In this paper we develop a perturbation approach to investigate spectral problems for singular ordinary differential operators with indefinite weight functions. We prove a general …