Bounds on the non-real spectrum of differential operators with indefinite weights

J Behrndt, F Philipp, C Trunk - Mathematische Annalen, 2013 - Springer
Ordinary and partial differential operators with an indefinite weight function can be viewed
as bounded perturbations of non-negative operators in Krein spaces. Under the assumption …

[HTML][HTML] Non-real eigenvalues of indefinite Sturm–Liouville problems

B Xie, J Qi - Journal of Differential Equations, 2013 - Elsevier
Non-real eigenvalues of indefinite Sturm–Liouville problems - ScienceDirect Skip to main
contentSkip to article Elsevier logo Journals & Books Search RegisterSign in View PDF …

A priori bounds and existence of non-real eigenvalues of indefinite Sturm–Liouville problems

J Qi, S Chen - Journal of Spectral Theory, 2014 - ems.press
Non-real eigenvalues of indefinite SturmÖLiouville problems Page 1 J. Spectr. Theory 4 (2014),
53–63 DOI 10.4171/JST/61 Journal of Spectral Theory © European Mathematical Society A priori …

The upper and lower bounds on non-real eigenvalues of indefinite Sturm-Liouville problems

J Qi, B Xie, S Chen - Proceedings of the American Mathematical Society, 2016 - ams.org
The present paper gives a priori upper and lower bounds on non-real eigenvalues of regular
indefinite Sturm-Liouville problems only under the integrability conditions. More generally, a …

[HTML][HTML] Spectral bounds for indefinite singular Sturm–Liouville operators with uniformly locally integrable potentials

J Behrndt, P Schmitz, C Trunk - Journal of Differential Equations, 2019 - Elsevier
The non-real spectrum of a singular indefinite Sturm–Liouville operator A= 1 r (− ddxpdd x+
q) with a sign changing weight function r consists (under suitable additional assumptions on …

[HTML][HTML] Bounds on real and imaginary parts of non-real eigenvalues of a non-definite Sturm–Liouville problem

M Kikonko, AB Mingarelli - Journal of Differential Equations, 2016 - Elsevier
Bounds on real and imaginary parts of non-real eigenvalues of a non-definite Sturm–Liouville
problem - ScienceDirect Skip to main contentSkip to article Elsevier logo Journals & Books …

Some remarks on the spectral problem underlying the Camassa–Holm hierarchy

F Gesztesy, R Weikard - Operator Theory in Harmonic and Non …, 2014 - Springer
We study particular cases of left-definite eigenvalue problems A ψ= B ψ A ψ\;=\; B ψ, with
A≥ 𝜀 IA\; ≧\; ε I for some 𝜀> 0 and B self− adjoint ε\;>\; 0\; and\; B\; self-adjoint, but B not …

[HTML][HTML] Perturbation and spectral theory for singular indefinite Sturm–Liouville operators

J Behrndt, P Schmitz, G Teschl, C Trunk - Journal of Differential Equations, 2024 - Elsevier
Abstract We study singular Sturm–Liouville operators of the form 1 rj (− ddxpjdd x+ qj), j= 0,
1, in L 2 ((a, b); rj) with endpoints a and b in the limit point case, where, in contrast to the …

Spectral bounds for singular indefinite Sturm-Liouville operators with 𝐿¹-potentials

J Behrndt, P Schmitz, C Trunk - Proceedings of the American Mathematical …, 2018 - ams.org
The spectrum of the singular indefinite Sturm-Liouville operator\begin {equation*}
A=\operatorname {sgn}(\cdot)\bigl (-\tfrac {d^ 2}{dx^ 2}+ q\bigr)\end {equation*} with a real …

Spectral analysis of singular ordinary differential operators with indefinite weights

J Behrndt, F Philipp - Journal of Differential Equations, 2010 - Elsevier
In this paper we develop a perturbation approach to investigate spectral problems for
singular ordinary differential operators with indefinite weight functions. We prove a general …