Curve counting on abelian surfaces and threefolds

J Bryan, G Oberdieck, R Pandharipande… - arXiv preprint arXiv …, 2015 - arxiv.org
We study the enumerative geometry of algebraic curves on abelian surfaces and threefolds.
In the abelian surface case, the theory is parallel to the well-developed study of the reduced …

Curves on K3 surfaces

X Chen, F Gounelas, C Liedtke - Duke Mathematical Journal, 2022 - projecteuclid.org
We complete the remaining cases of the conjecture predicting existence of infinitely many
rational curves on K3 surfaces in characteristic 0, prove almost all cases in positive …

Wall divisors and algebraically coisotropic subvarieties of irreducible holomorphic symplectic manifolds

A Knutsen, M Lelli-Chiesa, G Mongardi - Transactions of the American …, 2019 - ams.org
Rational curves on Hilbert schemes of points on $ K3 $ surfaces and generalised Kummer
manifolds are constructed by using Brill–Noether theory on nodal curves on the underlying …

Curve classes on irreducible holomorphic symplectic varieties

G Mongardi, JC Ottem - Communications in Contemporary …, 2020 - World Scientific
Curve classes on irreducible holomorphic symplectic varieties Page 1 Communications in
Contemporary Mathematics Vol. 22, No. 7 (2020) 1950078 (15 pages) c World Scientific …

Distinguishing Brill-Noether loci

A Auel, R Haburcak, AL Knutsen - arXiv preprint arXiv:2406.19993, 2024 - arxiv.org
arXiv:2406.19993v1 [math.AG] 28 Jun 2024 Page 1 arXiv:2406.19993v1 [math.AG] 28 Jun 2024
DISTINGUISHING BRILL–NOETHER LOCI ASHER AUEL, RICHARD HABURCAK, AND …

Nodal rational curves on Enriques surfaces of base change type

S Pesatori - arXiv preprint arXiv:2412.06426, 2024 - arxiv.org
Using lattice theory, Hulek and Sch\" utt proved that for every $ m\in\mathbb {Z} _+ $ there
exists a nine-dimensional family $\mathcal {F} _m $ of K3 surfaces covering Enriques …

Nonemptiness of Severi varieties on Enriques surfaces

C Ciliberto, T Dedieu, C Galati… - Forum of Mathematics …, 2023 - cambridge.org
Let be a general polarised Enriques surface, with L not numerically 2-divisible. We prove the
existence of regular components of all Severi varieties of irreducible nodal curves in the …

The Severi problem for abelian surfaces in the primitive case

A Zahariuc - Journal de Mathématiques Pures et Appliquées, 2022 - Elsevier
Severi varieties are roughly moduli spaces of curves of a fixed homology class and
geometric genus on a projective surface. In this paper, we determine the irreducible …

Irreducibility of Severi varieties on K3 surfaces

A Bruno, M Lelli-Chiesa - arXiv preprint arXiv:2112.09398, 2021 - arxiv.org
Let $(S, L) $ be a general primitively polarized $ K3 $ surface of genus $ g $. For every
$0\leq\delta\leq g $ we consider the Severi variety parametrizing integral curves in $| L …

Regenerations and applications

G Mongardi, G Pacienza - Forum of Mathematics, Sigma, 2025 - cambridge.org
Chen-Gounelas-Liedtke recently introduced a powerful regeneration technique, a process
opposite to specialization, to prove existence results for rational curves on projective …