X Chen, F Gounelas, C Liedtke - Duke Mathematical Journal, 2022 - projecteuclid.org
We complete the remaining cases of the conjecture predicting existence of infinitely many rational curves on K3 surfaces in characteristic 0, prove almost all cases in positive …
Rational curves on Hilbert schemes of points on $ K3 $ surfaces and generalised Kummer manifolds are constructed by using Brill–Noether theory on nodal curves on the underlying …
A Auel, R Haburcak, AL Knutsen - arXiv preprint arXiv:2406.19993, 2024 - arxiv.org
arXiv:2406.19993v1 [math.AG] 28 Jun 2024 Page 1 arXiv:2406.19993v1 [math.AG] 28 Jun 2024 DISTINGUISHING BRILL–NOETHER LOCI ASHER AUEL, RICHARD HABURCAK, AND …
S Pesatori - arXiv preprint arXiv:2412.06426, 2024 - arxiv.org
Using lattice theory, Hulek and Sch\" utt proved that for every $ m\in\mathbb {Z} _+ $ there exists a nine-dimensional family $\mathcal {F} _m $ of K3 surfaces covering Enriques …
C Ciliberto, T Dedieu, C Galati… - Forum of Mathematics …, 2023 - cambridge.org
Let be a general polarised Enriques surface, with L not numerically 2-divisible. We prove the existence of regular components of all Severi varieties of irreducible nodal curves in the …
A Zahariuc - Journal de Mathématiques Pures et Appliquées, 2022 - Elsevier
Severi varieties are roughly moduli spaces of curves of a fixed homology class and geometric genus on a projective surface. In this paper, we determine the irreducible …
A Bruno, M Lelli-Chiesa - arXiv preprint arXiv:2112.09398, 2021 - arxiv.org
Let $(S, L) $ be a general primitively polarized $ K3 $ surface of genus $ g $. For every $0\leq\delta\leq g $ we consider the Severi variety parametrizing integral curves in $| L …
Chen-Gounelas-Liedtke recently introduced a powerful regeneration technique, a process opposite to specialization, to prove existence results for rational curves on projective …