Hybrid deep spatial and statistical feature fusion for accurate MRI brain tumor classification

S Iqbal, AN Qureshi, M Alhussein… - Frontiers in …, 2024 - frontiersin.org
The classification of medical images is crucial in the biomedical field, and despite attempts
to address the issue, significant challenges persist. To effectively categorize medical …

SIMFusion: A semantic information-guided modality-specific fusion network for MR Images

X Zhang, A Liu, G Yang, Y Liu, X Chen - Information Fusion, 2024 - Elsevier
Multi-modal medical image fusion aims to integrate distinct imaging modalities to yield more
comprehensive and precise medical images, which can benefit the subsequent image …

Unidcp: Unifying multiple medical vision-language tasks via dynamic cross-modal learnable prompts

C Zhan, Y Zhang, Y Lin, G Wang… - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
Medical vision-language pre-training (Med-VLP) models have recently accelerated the fast-
growing medical diagnostics application. However, most Med-VLP models learn task …

Multi-Scale Contourlet Knowledge Guide Learning Segmentation

M Liu, L Jiao, X Liu, L Li, F Liu, S Yang… - IEEE Transactions …, 2023 - ieeexplore.ieee.org
For accurate segmentation, effective feature extraction has always been a challenging
problem, since the variability of appearance and the fuzziness of object boundaries …

Image Fusion via Vision-Language Model

Z Zhao, L Deng, H Bai, Y Cui, Z Zhang, Y Zhang… - arXiv preprint arXiv …, 2024 - arxiv.org
Image fusion integrates essential information from multiple source images into a single
composite, emphasizing the highlighting structure and textures, and refining imperfect areas …

DLGAN: Undersampled MRI reconstruction using Deep Learning based Generative Adversarial Network

R Noor, A Wahid, SU Bazai, A Khan, M Fang… - … Signal Processing and …, 2024 - Elsevier
Abstract Magnetic Resonance Imaging (MRI) is a crucial tool for quantitative image analysis
and clinical diagnosis, providing detailed anatomical images to assist in the detection of …

Image manipulation quality assessment

X Wu, J Lou, Y Wu, W Liu, PL Rosin… - … on Circuits and …, 2024 - ieeexplore.ieee.org
Image quality assessment (IQA) and its computational models play a vital role in modern
computer vision applications. Research has traditionally focused on signal distortions …

VR-DiagNet: Medical Volumetric and Radiomic Diagnosis Networks with Interpretable Clinician-like Optimizing Visual Inspection

S Chen, L Hu, T Ye, Z Lai, Q Zhang, K Liu… - Proceedings of the …, 2024 - dl.acm.org
Interpretable and robust medical diagnoses are essential traits for practicing clinicians. Most
computer-augmented diagnostic systems suffer from three major problems: non …

Cross-domain Low-dose CT Image Denoising with Semantic Preservation and Noise Alignment

J Huang, K Chen, Y Ren, J Sun, X Pu… - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
Deep learning (DL)-based Low-dose CT (LDCT) image denoising methods may face
domain shift problem, where data from different domains (ie, hospitals) may have similar …

UUD-Fusion: An unsupervised universal image fusion approach via generative diffusion model

X Wang, L Fang, J Zhao, Z Pan, H Li, Y Li - Computer Vision and Image …, 2024 - Elsevier
Image fusion is a classical problem in the field of image processing whose solutions are
usually not unique. The common image fusion methods can only generate a fixed fusion …