[HTML][HTML] Cyber risk and cybersecurity: a systematic review of data availability

F Cremer, B Sheehan, M Fortmann, AN Kia… - The Geneva papers …, 2022 - ncbi.nlm.nih.gov
Cybercrime is estimated to have cost the global economy just under USD 1 trillion in 2020,
indicating an increase of more than 50% since 2018. With the average cyber insurance …

Explainable artificial intelligence applications in cyber security: State-of-the-art in research

Z Zhang, H Al Hamadi, E Damiani, CY Yeun… - IEEE …, 2022 - ieeexplore.ieee.org
This survey presents a comprehensive review of current literature on Explainable Artificial
Intelligence (XAI) methods for cyber security applications. Due to the rapid development of …

Explainable artificial intelligence in cybersecurity: A survey

N Capuano, G Fenza, V Loia, C Stanzione - Ieee Access, 2022 - ieeexplore.ieee.org
Nowadays, Artificial Intelligence (AI) is widely applied in every area of human being's daily
life. Despite the AI benefits, its application suffers from the opacity of complex internal …

Dos and don'ts of machine learning in computer security

D Arp, E Quiring, F Pendlebury, A Warnecke… - 31st USENIX Security …, 2022 - usenix.org
With the growing processing power of computing systems and the increasing availability of
massive datasets, machine learning algorithms have led to major breakthroughs in many …

Explaining anomalies detected by autoencoders using Shapley Additive Explanations

L Antwarg, RM Miller, B Shapira, L Rokach - Expert systems with …, 2021 - Elsevier
Deep learning algorithms for anomaly detection, such as autoencoders, point out the
outliers, saving experts the time-consuming task of examining normal cases in order to find …

A survey of android malware detection with deep neural models

J Qiu, J Zhang, W Luo, L Pan, S Nepal… - ACM Computing Surveys …, 2020 - dl.acm.org
Deep Learning (DL) is a disruptive technology that has changed the landscape of cyber
security research. Deep learning models have many advantages over traditional Machine …

A comprehensive survey on machine learning approaches for malware detection in IoT-based enterprise information system

A Gaurav, BB Gupta, PK Panigrahi - Enterprise Information …, 2023 - Taylor & Francis
ABSTRACT The Internet of Things (IoT) is a relatively new technology that has piqued
academics' and business information systems' attention in recent years. The Internet of …

Adversarial attacks and defenses in images, graphs and text: A review

H Xu, Y Ma, HC Liu, D Deb, H Liu, JL Tang… - International journal of …, 2020 - Springer
Deep neural networks (DNN) have achieved unprecedented success in numerous machine
learning tasks in various domains. However, the existence of adversarial examples raises …

The role of machine learning in cybersecurity

G Apruzzese, P Laskov, E Montes de Oca… - … Threats: Research and …, 2023 - dl.acm.org
Machine Learning (ML) represents a pivotal technology for current and future information
systems, and many domains already leverage the capabilities of ML. However, deployment …

Machine learning testing: Survey, landscapes and horizons

JM Zhang, M Harman, L Ma… - IEEE Transactions on …, 2020 - ieeexplore.ieee.org
This paper provides a comprehensive survey of techniques for testing machine learning
systems; Machine Learning Testing (ML testing) research. It covers 144 papers on testing …