Algorithmic fairness in artificial intelligence for medicine and healthcare

RJ Chen, JJ Wang, DFK Williamson, TY Chen… - Nature biomedical …, 2023 - nature.com
In healthcare, the development and deployment of insufficiently fair systems of artificial
intelligence (AI) can undermine the delivery of equitable care. Assessments of AI models …

Heterogeneous federated learning: State-of-the-art and research challenges

M Ye, X Fang, B Du, PC Yuen, D Tao - ACM Computing Surveys, 2023 - dl.acm.org
Federated learning (FL) has drawn increasing attention owing to its potential use in large-
scale industrial applications. Existing FL works mainly focus on model homogeneous …

Decentralized federated learning: Fundamentals, state of the art, frameworks, trends, and challenges

ETM Beltrán, MQ Pérez, PMS Sánchez… - … Surveys & Tutorials, 2023 - ieeexplore.ieee.org
In recent years, Federated Learning (FL) has gained relevance in training collaborative
models without sharing sensitive data. Since its birth, Centralized FL (CFL) has been the …

Federated learning for healthcare: Systematic review and architecture proposal

RS Antunes, C André da Costa, A Küderle… - ACM Transactions on …, 2022 - dl.acm.org
The use of machine learning (ML) with electronic health records (EHR) is growing in
popularity as a means to extract knowledge that can improve the decision-making process in …

A comprehensive survey on poisoning attacks and countermeasures in machine learning

Z Tian, L Cui, J Liang, S Yu - ACM Computing Surveys, 2022 - dl.acm.org
The prosperity of machine learning has been accompanied by increasing attacks on the
training process. Among them, poisoning attacks have become an emerging threat during …

A comprehensive survey of privacy-preserving federated learning: A taxonomy, review, and future directions

X Yin, Y Zhu, J Hu - ACM Computing Surveys (CSUR), 2021 - dl.acm.org
The past four years have witnessed the rapid development of federated learning (FL).
However, new privacy concerns have also emerged during the aggregation of the …

Federated learning for internet of things: A comprehensive survey

DC Nguyen, M Ding, PN Pathirana… - … Surveys & Tutorials, 2021 - ieeexplore.ieee.org
The Internet of Things (IoT) is penetrating many facets of our daily life with the proliferation of
intelligent services and applications empowered by artificial intelligence (AI). Traditionally …

Federated learning: A survey on enabling technologies, protocols, and applications

M Aledhari, R Razzak, RM Parizi, F Saeed - IEEE Access, 2020 - ieeexplore.ieee.org
This paper provides a comprehensive study of Federated Learning (FL) with an emphasis
on enabling software and hardware platforms, protocols, real-life applications and use …

[HTML][HTML] The future of digital health with federated learning

N Rieke, J Hancox, W Li, F Milletari, HR Roth… - NPJ digital …, 2020 - nature.com
Data-driven machine learning (ML) has emerged as a promising approach for building
accurate and robust statistical models from medical data, which is collected in huge volumes …

Federated learning for healthcare informatics

J Xu, BS Glicksberg, C Su, P Walker, J Bian… - Journal of healthcare …, 2021 - Springer
With the rapid development of computer software and hardware technologies, more and
more healthcare data are becoming readily available from clinical institutions, patients …