P Caro, P Ola, M Salo - Communications in Partial Differential …, 2009 - Taylor & Francis
We prove a uniqueness theorem for an inverse boundary value problem for the Maxwell system with boundary data assumed known only in part of the boundary. We assume that …
This paper is concerned with the direct and inverse scattering of time-harmonic electromagnetic waves from bi-anisotropic media. For the direct problem, we establish an …
G Liu - arXiv preprint arXiv:1908.05096, 2019 - arxiv.org
In this paper, the elastic Dirichlet-to-Neumann map $\Xi_g $ is studied for the stationary elasticity system in a compact Riemannian manifold $(\Omega, g) $ with smooth boundary …
In this paper we prove uniqueness for an inverse boundary value problem (IBVP) arising in electrodynamics. We assume that the electromagnetic properties of the medium, namely the …
In this paper, we show how chiral materials are realized by embedding chiral objects (helices) in an isotropic medium. More precisely, we derive the Drude--Born--Fedorov …
In this paper we complete the proof that the material parameters can be obtained for a chiral electromagnetic body from the boundary admittance map. We prove that from the admittance …
S McDowall - Transactions of the American Mathematical Society, 2000 - ams.org
We consider the inverse boundary value problem for Maxwell's equations that takes into account the chirality of a body in ${\mathbb R}^ 3$. More precisely, we show that knowledge …
BM Brown, M Marletta, JM Reyes - Journal of Differential Equations, 2016 - Elsevier
A uniqueness result for the recovery of the electric and magnetic coefficients in the time- harmonic Maxwell equations from local boundary measurements is proven. No special …
MV De Hoop, G Nakamura, J Zhai - SIAM Journal on Applied Mathematics, 2019 - SIAM
We study the recovery of piecewise analytic density and stiffness tensor of a three- dimensional domain from the local dynamical Dirichlet-to-Neumann map. We give global …