Extrema of the two-dimensional discrete Gaussian free field

M Biskup - Random Graphs, Phase Transitions, and the Gaussian …, 2020 - Springer
These lecture notes offer a gentle introduction to the two-dimensional Discrete Gaussian
Free Field with particular attention paid to the scaling limits of the level sets at heights …

The maximum of the four-dimensional membrane model

F Schweiger - 2020 - projecteuclid.org
We show that the centred maximum of the four-dimensional membrane model on a box of
sidelength N converges in distribution. To do so, we use a criterion of Ding, Roy and …

Maximum of the Gaussian interface model in random external fields

H Sakagawa - Journal of Statistical Physics, 2024 - Springer
We consider the Gaussian interface model in the presence of random external fields, that is
the finite volume (random) Gibbs measure on R Λ N, Λ N=[-N, N] d∩ Z d with Hamiltonian …

Extremes of some Gaussian random interfaces

A Chiarini, A Cipriani, RS Hazra - Journal of Statistical Physics, 2016 - Springer
In this article we give a general criterion for some dependent Gaussian models to belong to
maximal domain of attraction of Gumbel, following an application of the Stein–Chen method …

Quelques inégalités de superconcentration: théorie et applications

K Tanguy - 2017 - theses.hal.science
Cette thèse porte sur le phénomène de superconcentration qui apparaît dans l'étude des
fluctuations de divers modèles de la recherche actuelle (matrices aléatoires, verres de …

One-arm Probabilities for Metric Graph Gaussian Free Fields below and at the Critical Dimension

Z Cai, J Ding - arXiv preprint arXiv:2406.02397, 2024 - arxiv.org
For the critical level-set of the Gaussian free field on the metric graph of $\mathbb Z^ d $, we
consider the one-arm probability $\theta_d (N) $, ie, the probability that the boundary of a …

Extremes of log-correlated random fields and the Riemann zeta function, and some asymptotic results for various estimators in statistics

F Ouimet - 2019 - papyrus.bib.umontreal.ca
In this thesis, we study the extreme values of certain log-correlated random fields that are
Gaussian (the scale-inhomogeneous Gaussian free field and the time-inhomogeneous …

The Scaling Limit of the -Model

A Cipriani, B Dan, RS Hazra - Journal of Statistical Physics, 2021 - Springer
In this article we study the scaling limit of the interface model on\, Z\,^ d Z d where the
Hamiltonian is given by a mixed gradient and Laplacian interaction. We show that in any …

Maximum of the interface model in random external fields

H Sakagawa - arXiv preprint arXiv:2307.12583, 2023 - arxiv.org
We consider the $\nabla\phi $ interface model in the presence of random external fields, that
is the finite volume (random) Gibbs measure on $\mathbb {R}^{\Lambda_N} …

On the membrane model and the discrete Bilaplacian

FM Schweiger - 2021 - bonndoc.ulb.uni-bonn.de
This thesis is concerned with the membrane model, an example of a discrete random
interface model. This model arises, for example, when studying thermal fluctuations in …