Vision-language pre-training: Basics, recent advances, and future trends

Z Gan, L Li, C Li, L Wang, Z Liu… - Foundations and Trends …, 2022 - nowpublishers.com
This monograph surveys vision-language pre-training (VLP) methods for multimodal
intelligence that have been developed in the last few years. We group these approaches …

Self-supervised learning for videos: A survey

MC Schiappa, YS Rawat, M Shah - ACM Computing Surveys, 2023 - dl.acm.org
The remarkable success of deep learning in various domains relies on the availability of
large-scale annotated datasets. However, obtaining annotations is expensive and requires …

Imagebind: One embedding space to bind them all

R Girdhar, A El-Nouby, Z Liu, M Singh… - Proceedings of the …, 2023 - openaccess.thecvf.com
We present ImageBind, an approach to learn a joint embedding across six different
modalities-images, text, audio, depth, thermal, and IMU data. We show that all combinations …

Multimodal learning with transformers: A survey

P Xu, X Zhu, DA Clifton - IEEE Transactions on Pattern Analysis …, 2023 - ieeexplore.ieee.org
Transformer is a promising neural network learner, and has achieved great success in
various machine learning tasks. Thanks to the recent prevalence of multimodal applications …

Git: A generative image-to-text transformer for vision and language

J Wang, Z Yang, X Hu, L Li, K Lin, Z Gan, Z Liu… - arXiv preprint arXiv …, 2022 - arxiv.org
In this paper, we design and train a Generative Image-to-text Transformer, GIT, to unify
vision-language tasks such as image/video captioning and question answering. While …

Socratic models: Composing zero-shot multimodal reasoning with language

A Zeng, M Attarian, B Ichter, K Choromanski… - arXiv preprint arXiv …, 2022 - arxiv.org
Large pretrained (eg," foundation") models exhibit distinct capabilities depending on the
domain of data they are trained on. While these domains are generic, they may only barely …

Blip: Bootstrapping language-image pre-training for unified vision-language understanding and generation

J Li, D Li, C Xiong, S Hoi - International conference on …, 2022 - proceedings.mlr.press
Abstract Vision-Language Pre-training (VLP) has advanced the performance for many vision-
language tasks. However, most existing pre-trained models only excel in either …

A metaverse: Taxonomy, components, applications, and open challenges

SM Park, YG Kim - IEEE access, 2022 - ieeexplore.ieee.org
Unlike previous studies on the Metaverse based on Second Life, the current Metaverse is
based on the social value of Generation Z that online and offline selves are not different …

Omnivl: One foundation model for image-language and video-language tasks

J Wang, D Chen, Z Wu, C Luo, L Zhou… - Advances in neural …, 2022 - proceedings.neurips.cc
This paper presents OmniVL, a new foundation model to support both image-language and
video-language tasks using one universal architecture. It adopts a unified transformer-based …

Videoclip: Contrastive pre-training for zero-shot video-text understanding

H Xu, G Ghosh, PY Huang, D Okhonko… - arXiv preprint arXiv …, 2021 - arxiv.org
We present VideoCLIP, a contrastive approach to pre-train a unified model for zero-shot
video and text understanding, without using any labels on downstream tasks. VideoCLIP …