LNAS: A clinically applicable deep-learning system for mediastinal enlarged lymph nodes segmentation and station mapping without regard to the pathogenesis using …

Y Cao, J Feng, C Wang, F Yang, X Wang, J Xu… - La radiologia …, 2024 - Springer
Background The accurate identification and evaluation of lymph nodes by CT images is of
great significance for disease diagnosis, treatment, and prognosis. Purpose To assess the …

Multi-task parallel with feature sharing integrated 3D U-Nets for Glioma Segmentation

S Li, S Guo - Biomedical Signal Processing and Control, 2024 - Elsevier
Glioma segmentation is a crucial task for accurate quantitative analysis, precise diagnosis
and effective treatment. However, the challenge remains in simultaneously locating multiple …

Deep Learning and Registration-Based Mapping for Analyzing the Distribution of Nodal Metastases in Head and Neck Cancer Cohorts: Informing Optimal …

T Weissmann, S Mansoorian, MS May, S Lettmaier… - Cancers, 2023 - mdpi.com
Simple Summary This study presents two novel methods for automatically analyzing the
distribution of nodal metastases in head and neck (H/N) cancer cohorts. The proposed deep …

Segmentation of mediastinal lymph nodes in CT with anatomical priors

TS Mathai, B Liu, RM Summers - International Journal of Computer …, 2024 - Springer
Abstract Purpose Lymph nodes (LNs) in the chest have a tendency to enlarge due to various
pathologies, such as lung cancer or pneumonia. Clinicians routinely measure nodal size to …

German specialists treating testicular cancer follow different guidelines with resulting inconsistency in assessment of retroperitoneal lymph-node metastasis: clinical …

J Schoch, K Haunschild, A Strauch, K Nestler… - World Journal of …, 2023 - Springer
Background Testicular germ cell tumors (GCTs) are aggressive but highly curable tumors.
To avoid over/undertreatment, reliable clinical staging of retroperitoneal lymph-node …

Artificial intelligence in lung cancer: Application and future thinking.

W Zhao, J Liu - Zhong nan da xue xue bao. Yi xue ban= Journal of …, 2022 - europepmc.org
医疗大数据的可获得性和计算机软硬件的飞速发展, 极大地促进了智慧医疗的发展. 人工智能
(artificial intelligence, AI) 已成功应用于医学多个领域, 在肺癌方面的应用尤为突出 …

Automatic Lymph Nodes Segmentation and Histological Status Classification on Computed Tomography Scans Using Convolutional Neural Network

A Shevtsov, I Tominin, V Tominin, V Malevanniy… - medRxiv, 2024 - medrxiv.org
Lung cancer is the second most common type of cancer worldwide, making up about 20% of
all cancer deaths with less than 10% 5-year survival rate for the very late stage. The recent …

[HTML][HTML] 人工智能在肺癌领域的应用与思考

赵伟, 刘军 - Journal of Central South University Medical Sciences, 2022 - ncbi.nlm.nih.gov
医疗大数据的可获得性和计算机软硬件的飞速发展, 极大地促进了智慧医疗的发展。
人工智能(artificial intelligence, AI) 已成功应用于医学多个领域, 在肺癌方面的应用尤为突出 …

Diagnostische Radiologie

S Lennartz, HP Schlemmer, T Persigehl - Die Onkologie, 2022 - Springer
Zusammenfassung Hintergrund Aktuelle wissenschaftliche Entwicklungen in der
onkologischen Bildgebung führen in verschiedenen klinischen Anwendungsfeldern zu …

Assessing the probability of metastatic mediastinal lymph node involvement in patients with non-small cell lung cancer using convolutional neural networks on chest …

AE Shevtsov, ID Tominin, VD Tominin… - Digital …, 2024 - jdigitaldiagnostics.com
BACKGROUND: Lung cancer is the second most common cancer worldwide, accounting for
approximately 20% of all cancer-related deaths and having a< 10% 5-year survival rate for …